首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection Performance of a Mean-Level Threshold   总被引:1,自引:0,他引:1  
The problem of detecting signals in nonstationary clutter is met by presenting a mean-level or adaptive threshold which adjusts to the changing background level. Such a threshold performs better than a fixed threshold that must be set for the highest amplitude clutter. However, the mean-level threshold does not perform as well for stationary noise as a fixed threshold set at the proper value. One measure of effectiveness of an adaptive threshold is its performance in stationary noise (compared to the optimum fixed threshold) for a specified speed of response. For the mean-level threshold, a simple mathematical solution is found for the detection probability when the noise is stationary and the signal scintillates rapidly. The performance is evaluated for a wide range of mean-level-threshold time constants and for several false-alarm probabilities. The results are presented graphically. As an example, the mean-level threshold suffers 3 dB in detectability (equivalent signal-to-noise ratio) in the presence of stationary noise as compared to the optimum fixed threshold for 50-percent probability of detection, false-alarm probability of 10-8, and an adjustment time of 15 times the signal duration.  相似文献   

2.
The detection performance of a conventional narrowband analyzer is compared with two adaptive processor mechanizations based on the Widrow least mean squares algorithm. Comparisons are based on both analysis and extensive digital simulation. With a narrowband signal in stationary, white background noise, the performance of the three systems is shown to be essentially the same. With nonstationary background noise, the performance of the conventional system degrades by an amount proportional to the processing time-bandwidth product. The adaptive systems appear to be less sensitive to the nonstationary background, resulting in a potential performance advantage relative to the conventional system.  相似文献   

3.
Analysis of the performance of a mean-level threshold in the detection of nonfluctuating signals is performed. Formulas for the probability of detection are derived and a simple recursive method that can be used for computations is described. Binary integration is discussed, and it is shown that the loss in sensitivity due to the use of an adaptive threshold followed by binary integration is only a fraction of a decibel when compared with optimum binary integration. Binary integration results are given for both fluctuating and nonfluctuating signals.  相似文献   

4.
This paper is devoted to the detection performance evaluation of the mean-level (ML) constant false-alarm rate (CFAR) detectors processing M-correlated sweeps in the presence of interfering targets. The consecutive pulses are assumed to be fluctuating according to the Swerling I model. Exact expressions are derived for the detection probability of the conventional mean-level detector (MLD) and its modified versions under Rayleigh fluctuating target model. Performance for independent sweeps can be easily obtained by setting the sweep-to-sweep correlation coefficient equal to zero. Results are obtained for both homogeneous and nonhomogeneous background environments. It is shown that for fixed M, the relative improvement over the single sweep case increases as the correlation between sweeps decreases. For the same parameter values, the minimum MLD has the best performance in the presence of extraneous target returns among the reference noise samples  相似文献   

5.
An adaptive detection technique suitable for both stationary and nonstationary noise environments based upon a generalized likelihood ratio test (GLRT) formulation is presented. The detector, which is statistically equivalent to a special form of the Wilks's lambda test, noncoherently combines the information contained in a pulse train of arbitrary length for decision-making purposes. The probability density function of the test under the noise only hypothesis is shown to be central χ2. Under the signal plus noise hypothesis, an exact statistical characterization of the test cannot be obtained, and, therefore, a Chernoff bound is derived. Results in terms of the probability of detection versus signal-to-noise ratio (SNR) obtained from Monte Carlo simulation, the Chernoff bound, and the optimal matched filter case are examined. The performance of the noncoherent detector is shown to be a function of the covariance matrix estimate and the number of data samples  相似文献   

6.
A recursive multiple model approach to noise identification   总被引:2,自引:0,他引:2  
Correct knowledge of noise statistics is essential for an estimator or controller to have reliable performance. In practice, however, the noise statistics are unknown or not known perfectly and thus need to be identified. Previous work on noise identification is limited to stationary noise and noise with slowly varying statistics only. An approach is presented here that is valid for nonstationary noise with rapidly or slowly varying statistics as well as stationary noise. This approach is based on the estimation with multiple hybrid system models. As one of the most cost-effective estimation schemes for hybrid system, the interacting multiple model (IMM) algorithm is used in this approach. The IMM algorithm has two desirable properties: it is recursive and has fixed computational requirements per cycle. The proposed approach is evaluated via a number of representative examples by both Monte Carlo simulations and a nonsimulation technique of performance prediction developed by the authors recently. The application of the proposed approach to failure detection is also illustrated  相似文献   

7.
In a recent correspondence1 a calculation of the optimum bandwidth of a low-pass RC filter for the detection of a pulse signal in nonstationary noise was presented. The purpose of this correspondence is: 1) to point out additional references to the work which has been conducted in the stationary noise case, and 2) to present an interesting alternate derivation of the expected output noise power for the nonstationary noise case.  相似文献   

8.
The censored mean-level detector (CMLD) is an alternative to the mean-level detector that achieves robust detection performance in a multiple-target environment by censoring several of the largest samples of the maximum likelihood estimate of the background noise level. Here we derive exact expressions for the probability of detection of the CMLD in a multiple-target environment when a fixed number of Swerling II targets are present. The primary target is modeled by Swerling case II, and only single-pulse processing is analyzed. Optimization of the CMLD parameters is considered, and a comparison to other detectors is presented.  相似文献   

9.
The problem of adaptive radar detection in clutter which is nonstationary both in slow and fast time is addressed. Nonstationarity within a coherent processing interval (CPI) often precludes target detection because of the masking induced by Doppler spreading of the clutter. Across range bins (i.e., fast time), nonstationarity severely limits the amount of training data available to estimate the noise covariance matrix required for adaptive detection. Such difficult clutter conditions are not uncommon in complex multipath propagation conditions where path lengths can change abruptly in dynamic scenarios. To mitigate nonstationary Doppler spread clutter, an approximation to the generalized likelihood ratio test (GLRT) detector is presented wherein the CPI from the hypothesized target range is used for both clutter estimation and target detection. To overcome the lack of training data, a modified time-varying autoregressive (TVAR) model is assumed for the clutter return. In particular, maximum likelihood (ML) estimates of the TVAR parameters, computed from a single snapshot of data, are used in a GLRT for detecting stationary targets in possibly abruptly nonstationary clutter. The GLRT is compared with three alternative methods including a conceptually simpler ad hoc approach based on extrapolation of quasi-stationary data segments. Detection performance is assessed using simulated targets in both synthetically-generated and real radar clutter. Results suggest the proposed GLRT with TVAR clutter modeling can provide between 5–8 dB improvement in signal-to-clutter plus noise ratio (SCNR) when compared with the conventional methods.  相似文献   

10.
In automatic radar detection, digital integration of the envelope detector outputs is often used as a good approximation to the optimum. This requires quantizing the envelope detector outputs. In this paper, quantizer structures for narrowband signal detection are considered. Quantizer characteristics are derived to optimize performance as measured by the detector efficacy?an asymptotic performance measure. Asymptotic and finite sample performance results are presented. The results obtained are not limited in their application to Gaussian noise only, although this important case is given specific consideration.  相似文献   

11.
The radiometer is a common method for detection of unknown signals in noise. Most analyses of radiometer performance are based on assumptions of stationary Gaussian noise with known marginal statistics. In this note, we use a spherically invariant noise model to derive simple expressions for radiometer performance degradation in noise variance uncertainty. Numerical examples are provided to show that channel uncertainty imposes a substantial penalty in detection performance  相似文献   

12.
The discrete time detection of a known constant signal in white stationary Laplace noise is considered. Exact expressions describing the performance of both the Neyman-Pearson optimal detector and the suboptimal linear detector are presented. Also, graphs of the receiver operating characteristics are given. The actual performance of the Neyman-Pearson optimal detector is compared to that predicted by a Gaussian approximation to the distribution of the test statistic.  相似文献   

13.
The development of numerical methods for studying the transient nonstationary behavior of a delay line discriminator is presented. Expressions are developed for the mean and the variance of the output noise process. For the cases where the output is stationary, power density spectra are found.  相似文献   

14.
Adaptive Detection Algorithms for Multiple-Target Situations   总被引:2,自引:0,他引:2  
The performance of a mean-level detector is considered for the case where one or more interfering target returns are present in the set of cells used in estimating the clutter-plus-noise level. A serious degradation of detection probability is demonstrated for all of the single-pulse Swerling target fluctuation models (i. e., cases 0, 2, and 4). Indeed, for fixed mean radar cross sections of the primary and interfering targets, the probability of detecting the primary target is asymptotic to values significantly less than unity as the signal-to-noise ratios of the returns approach infinity. A class of alternative adaptive detection procedures is proposed and analyzed. These procedures, based on ranking and censoring techniques, maintain acceptable performance in the presence of interfering targets, and require only a minor addition in hardware to a conventional mean-level detector.  相似文献   

15.
Spatial-temporal detection of electro-optic moving targets   总被引:1,自引:0,他引:1  
A maximum likelihood algorithm to detect moving targets in space-time electro-optic data is derived using a model of temporally stationary and spatially nonstationary clutter statistics. Performance is evaluated in term of the probabilities of false alarm and detection. This algorithm is applied to a variety of image sequences: visible band and infrared (IR) sensors, with terrestrial and celestial clutter backgrounds. Comparison of theoretically predicted and experimentally derived statistics shows excellent agreement, validating the model and theoretical predictions  相似文献   

16.
Arrival Time Estimation by Adaptive Thresholding   总被引:1,自引:0,他引:1  
Arrival time estimation by adaptive thresholding is described. The probability density of arrival time is derived for differentiable Markov processes. The special case of additive, stationary noise is given particular attention. A direct derivation of the probability density of arrival time for pulses with sharply rising edges is given for arbitrary noise. The results are applied to the Gaussian and Rice distributions. Comparison with the Cramer-Rao bound of estimation theory indicates the asymptotic optimality of adaptive thresholding in the latter two cases.  相似文献   

17.
The cell averaging LOG/CFAR receiver is a special implementation of a constant-false-alarm-rate (CFAR) receiver in which the noise level estimate is derived from a set of contiguous time samples of the output of a logarithmic (LOG) detector as obtained from a tapped delay line. This CFAR receiver is capable of operating over a larger dynamic range of noise levels than a conventional cell averaging CFAR receiver, but with somewhat poorer detectability. The performance in stationary Gaussian noise of the cell averaging LOG/CFAR receiver with no post-detection integration is determined in this paper. For a small number of reference noise samples, results were obtained by a Monte Carlo simulation using the technique of importance sampling. For a large number of reference noise samples, a second moment analysis gave the desired results. Both these results can be summarized in the following simple formula, NLOG = 1.65NLIN - 0.65, which relates the number of reference samples required by each of the two receivers for equivalent performance. Thus, for the cell averaging LOG/CFAR receiver to give the same detection performance as the conventional cell averaging CFAR receiver, the number of reference noise samples has to be increased by up to 65 percent.  相似文献   

18.
The problem of detecting target signals in an ocean environment using active sonar is complicated by the nonstationary background which usually consists of both ambient ocean noise and reverberation. on. In this paper a signal processing system capable of detecting a signal in nonstationary noise is introduced. This system makes use of the mean and variance time functions of the nonstationary noise background in order to design estimation filters which will cope with the nonstationarity. Appropriate statistics of the noise and signal (tone burst) plus noise have been obtained and are used to determine the probabilities of false alarm and detection and the receiver operating characteristics.  相似文献   

19.
Radiometric detection of spread-spectrum signals in noise ofuncertain power   总被引:2,自引:0,他引:2  
The standard analysis of the radiometric detectability of a spread-spectrum signal assumes a background of stationary, white Gaussian noise whose power spectral density can be measured very accurately. This assumption yields a fairly high probability of interception, even for signals of short duration. By explicitly considering the effect of uncertain knowledge of the noise power density, it is demonstrated that detection of these signals by a wideband radiometer can be considerably more difficult in practice than is indicated by the standard result. Worst-case performance bounds are provided as a function of input signal-to-noise ratio (SNR), time-bandwidth (TW) product and peak-to-peak noise uncertainty. The results are illustrated graphically for a number of situations of interest. It is also shown that asymptotically, as the TW product becomes large, the SNR required for detection becomes a function of noise uncertainty only and is independent of the detection parameters and the observation interval  相似文献   

20.
The performance of a mean level detector processing M-correlated consecutive sweeps is derived. Performance when sweeps are independent can be obtained simply as a special case. The background noise is assumed stationary Gaussian and pulses are fluctuating according to the Swerling I model. Results are obtained for both finite and infinite reference noise samples. It is shown that for fixed M the relative improvement over the single hit case increases when the correlation between sweeps decreases and as the probability of false alarm is kept at lower rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号