首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 260 毫秒
1.
根据有序统计(OS)理论和恒虚警(CFAR)检测方法,提出了一种非一致环境下瑞利相关信号检测理论和分析方法,并利用上述分析方法对单OS-CFAR和 大逻辑(MX)OS_CFAR的检测性能进行了分析,试验仿真结果给出了两种检测器在不同环境下的检测性能,有和地验证了上述分析方法的有效性。  相似文献   

2.
复合高斯杂波中距离扩展目标的迭代近似GLRT检测器   总被引:1,自引:0,他引:1  
顾新锋  简涛  何友  郝晓琳 《航空学报》2013,34(5):1140-1150
 研究了结构化的复合高斯杂波(CGC)背景中距离扩展目标自适应检测问题。针对异质杂波背景中的近似广义似然比检验(AGLRT-HTG)检测器应用于CGC背景中时存在一定的信杂比损失问题,结构化的复合高斯杂波采用自回归过程建模,结合近似广义似然比检验(AGLRT)方法和迭代估计思想,提出了CGC背景中距离扩展目标的迭代近似广义似然比检测器(RAGLRT-CGC)。从理论上分析了极限情况下RAGLRT-CGC虚警概率与检测门限关系的解析表达式。仿真结果表明,在CGC背景中,RAGLRT-CGC对不同多主散射点目标具有较好的鲁棒性,并且检测性能明显优于AGLRT-HTG。  相似文献   

3.
根据有序统计(OS)理论和恒虚警(CFAR)检测方法,提出了一种非一致环境下瑞利相关信号检测理论和分析方法,并利用上述分析方法对单窗OS-CFAR和双窗最大逻辑(MX)OS-CFAR的检测性能进行了分析.试验仿真结果给出了两种检测器在不同环境下的检测性能,有力地验证了上述分析方法的有效性.  相似文献   

4.
贺霖  潘泉  赵永强  郑纪伟 《航空学报》2006,27(4):657-662
针对航拍高光谱图像中未知背景地物特征条件下小目标的检测问题,给出一种检测算法。利用目标的低概率特性,通过模糊聚类获取高光谱图像中背景的光谱特性;然后将高光谱数据向背景光谱信号的正交子空间及目标信号子空间投影以抑制背景和噪声信号;最后在特征层利用广义似然比检验构造出具有恒虚警特性的检测器,完成融合检测过程。理论分析和实验结果表明了算法的有效性。  相似文献   

5.
传统的能量检测在接收信号为高斯分布下最优,其检测性能最终取决于信噪比。当信噪比下降时,检测性能必然恶化,而且这种恶化是不可避免的和难以改善的。为了改善弱信号的检测性能,本文同时利用了信号的三阶和二阶统计量构造一种双通道信号检测器,在强高斯噪声的背景下,只要弱信号蕴含有足够多的双谱信息,其检测性能将远远超过基于传统的能量检测器的性能。  相似文献   

6.
针对如何模拟海战场电子干扰环境下雷达作用距离这一问题,首先,分析了雷达检测因子与虚警概率、检测概率的关系;然后,在考虑电子干扰功率的基础上建立了综合信干比模型,利用综合信干比与检测因子之间的关系确定了雷达作用距离;最后,通过仿真分析,验证了模型的有效性和适用性。  相似文献   

7.
一种基于波形的距离扩展目标检测方法   总被引:4,自引:0,他引:4       下载免费PDF全文
针对高分辨率雷达距离扩展目标检测问题,提出了一种基于一维距离像波形的距离扩展目标检测器。分析了目标一维距离像的波形特点,对一维距离像的离散序列进行FFT变换,获得变换后的低频分量平均值与高频分量平均值的比值,以其中最大的比值作为检测统计量并进行有无目标的判决。仿真结果表明,此检测方法的检测性能要优于依赖于散射中心空间分布密度的广义似然比(SSD—GLRT,Spatial Scattering Density—Generalized Likelihood Ratio Test)检测器,并且明显优于基于波形熵的检测器。  相似文献   

8.
利用无偏最小方差估计(UMVE)算法分析了UMVE对数单元平均恒虚警检测器的性能.它的前沿和后沿均采用UMVE算法产生局部估计,再对两者求和得到背景功率水平.在SwerlingⅡ模型下,给出UMVE对数单元平均恒虚警检测器虚警概率和检测概率解析表达式.与对数单元平均恒虚警检测器相比,UMVE对数单元平均恒虚警检测器的性能得到了改善.  相似文献   

9.
顾新锋  简涛  何友  郝晓琳 《航空学报》2012,33(12):2261-2267
在采用球不变随机向量(SIRV)建模的非高斯杂波背景下,研究了导向矢量失配或未知时距离扩展目标的检测问题。先假设导向矢量已知,采用广义似然比检验(GLRT)得到每个距离单元的归一化匹配滤波器(NMF)统计量,再将多个距离单元的统计量进行非相干积累得到扩展目标的NMF积累检测器(NMFI),然后通过最大化检测统计量的方法,结合特征值分解技术,对导向矢量进行估计,提出了距离扩展目标的盲NMFI(B-NMFI)。仿真分析表明:当导向矢量失配时,NMFI的检测性能优于GLRT;当导向矢量未知时,B-NMFI能有效地检测目标,并且对不同方位的目标具有很好的鲁棒性。  相似文献   

10.
军用直升机雷达隐身性能仿真与评估   总被引:1,自引:0,他引:1  
采用高频方法计算了某型通用直升机及其隐身改型的RCS数据,基于现有雷达隐身性能计算方法和直升机低空飞行特点,对直升机在单部雷达和雷达组网两种情况下的雷达隐身性能进行仿真分析,给出了单部雷达和雷达组网发现目标的判定准则,分析了直升机可探测范围曲线、平均综合检测概率和暴露时间等隐身指标。通过仿真分析,评估了不同飞行高度下RCS减缩与直升机隐身性能的定量关系,为直升机的隐身设计提供了参考依据。  相似文献   

11.
In a decentralized detection scheme, several sensors perform a binary (hard) decision and send the resulting data to a fusion center for the final decision. If each local decision has a constant false alarm rate (CFAR), the final decision is ensured to be CFAR. We consider the case that each local decision is a threshold decision, and the threshold is proportional, through a suitable multiplier, to a linear combination of order statistics (OS) from a reference set (a generalization of the concept of OS thresholding). We address the following problem: given the fusion rule and the relevant system parameters, select each threshold multiplier and the coefficients of each linear combination so as to maximize the overall probability of detection for constrained probability of false alarm. By a Lagrangian maximization approach, we obtain a general solution to this problem and closed-form solutions for the AND and OR fusion logics. A performance assessment is carried on, showing a global superiority of the OR fusion rule in terms of detection probability (for operating conditions matching the design assumptions) and of robustness (when these do not match). We also investigate the effect of the hard quantization performed at the local sensors, by comparing the said performance to those achievable by the same fusion rule in the limiting case of no quantization  相似文献   

12.
An adaptive threshold detector to test for the presence of a weak signal in additive non-Gaussian noise of unknown level is discussed. The detector consists of a locally optimum detector, a noise level estimator, and a decision device. The detection threshold is made adaptive according to the information provided by the noise level estimator in order to keep a fixed false-alarm probability. Asymptotic performance characteristics are obtained indicating relationships among the basic system parameters such as the reference noise sample size and the underlying noise statistics. It is shown that, as the reference noise sample size is made sufficiently large, the adaptive threshold detector attains the performance of a corresponding locally optimum detector for detecting the weak signal were the noise level known.  相似文献   

13.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   

14.
Linearly combined order statistic (LCOS) constant false-alarm rate (CFAR) detectors are examined for efficient and robust threshold estimation applied to exponentially distributed background observations for improved detection. Two optimization philosophies have been employed to determine the weighting coefficients of the order statistics. The first method optimizes the coefficients to obtain efficient estimates of clutter referred to the censored maximum likelihood (CML) and best linear unbiased (BLU) CFAR detectors. The second optimization involves maximizing the probability of detection under Swerling II targets and is referred to as the most powerful linear (MPL) CFAR detector. The BLU-CFAR detector assumes no knowledge of the target distribution in contrast to the MPL-CFAR detector which requires partial knowledge of the target distribution. The design of these CFAR detectors and the probability of detection performance are mathematically analyzed for background observations having homogeneous and heterogeneous distributions wherein the trade-offs between robustness and detection performance are illustrated  相似文献   

15.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   

16.
A distributed radar detection system that employs binary integration at each local detector is studied. Local decisions are transmitted to the fusion center where they are combined to yield a global decision. The optimum values of the two thresholds at each local processor are determined so as to maximize the detection probability under a given probability of false alarm constraint. Using an important channel model, performance comparisons are made to determine the integration loss  相似文献   

17.
Binary parallel distributed-detection architectures employ a bank of local detectors to observe a common volume of surveillance, and form binary local decisions about the existence or nonexistence of a target in that volume. The local decisions are transmitted to a central detector, the data fusion center (DEC), which integrates them to a global target or no target decision. Most studies of distributed-detection systems assume that the local detectors are synchronized. In practice local decisions are made asynchronously and the DFC has to update its global decision continually. In this study the number of local decisions observed by the central detector within any observation period is Poisson distributed. An optimal fusion rule is developed and the sufficient statistic is shown to be a weighted sum of the local decisions collected by the DFC within the observation interval. The weights are functions of the individual local detector performance probabilities (i.e., probabilities of false alarm and detection). In this respect the decision rule is similar to the one developed by Chair and Varshney for the synchronized system. Unlike the Chair-Varshney rule, however, the DFC's decision threshold in the asynchronous system is time varying. Exact expressions and asymptotic approximations are developed for the detection performance with the optimal rule. These expressions allow performance prediction and assessment of tradeoffs in realistic decision fusion architectures which operate over modern communication networks  相似文献   

18.
The average likelihood ratio detector is derived as the optimum detector for detecting a target line with unknown normal parameters in the range-time data space of a search radar, which is corrupted by Gaussian noise. The receiver operation characteristics of this optimum detector is derived to evaluate its performance improvement in comparison with the Hough detector, which uses the return signal of several successive scans to achieve a non-coherent integration improvement and get a better performance than the conventional detector. This comparison, which is done through analytic derivations and also through simulation results, shows that the average likelihood ratio detector has a better performance for different SNR values. This result is justified by showing the disadvantages of the Hough method, which are eliminated by the optimum detector. To have an estimate for the location of the detected target line in the optimum detection method as the Hough method, which detects and localizes the target lines simultaneously, we present the maximum a posteriori probability estimator. The estimation performance of the two methods is then compared and it is shown that the maximum a posteriori probability estimator localizes the detected target lines with a better performance in comparison with the Hough method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号