首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 388 毫秒
1.
切换拓扑下无人机集群系统时变编队控制   总被引:4,自引:2,他引:2  
针对多无人机(UAV)间通信拓扑可能发生变化的情况,研究了具有二阶积分特性的无人机集群系统的轨迹跟踪与时变编队控制问题。基于一致性方法设计了编队控制器,将编队控制问题转换成闭环系统的稳定性问题,引入了切换拓扑平均驻留时间的概念,并在此基础上利用线性矩阵不等式(LMI)方法,给出了控制器设计步骤。通过构造分段连续Lyapunov函数,证明了切换拓扑下无人机集群系统能够实现对指定轨迹的跟踪并且实现时变编队飞行。以三维空间运动的无人机集群系统为例进行了仿真验证,结果表明本文所提方法能够解决切换拓扑下无人机集群系统的轨迹跟踪与时变编队问题。  相似文献   

2.
针对在联合连通拓扑条件下的多无人机系统,研究了具有二阶动力学系统模型的多无人机系统时变编队控制问题。基于一致性理论,设计了一致性控制器,将联合连通拓扑条件下的编队控制问题简化为低阶时间平均系统的渐进稳定性问题。利用Lyapunov函数证明了所设计的控制器能够实现编队控制,并利用线性矩阵不等式(LMI)方法给出了控制器的设计算法。在三维空间中,对多无人机系统进行了仿真,验证了所设计的一致性控制器能够使得多无人机系统在联合连通拓扑条件下形成时变编队。  相似文献   

3.
基于部分状态信息的控制器是一类特殊的静态输出反馈控制器, 一般难以利用线性矩阵不等式工具求解. 本文研究T-S模糊系统的部分状态反馈镇定及部分状态反馈H∞控制问题. 首先, 通过矩阵变换, 将T-S模糊系统的部分状态反馈镇定问题转换成求解一组线性矩阵不等式(LMIs); 然后, 以此为基础得到基于LMI的部分状态反馈H∞控制器设计方法; 最后, 通数值例子验证所给方法的有效性.  相似文献   

4.
针对现阶段基于方向信息的编队跟踪控制方法需要提前预知系统期望速度的问题,提出了基于分布式速度观测器的无人机群编队控制策略。通过速度观测器和基于方向信息的编队控制器的结合,解决了部分无人机在编队过程中无法直接获取速度信息的问题。系统的编队采用了领导者-跟随者结构,通过改变领导者的相对位置来完成缩放任务。控制器的设计引入了旋转矩阵来实现编队系统的旋转任务,然后通过Lyapunov方法证明了控制器的稳定性。最后通过仿真软件的缩放和旋转试验证明了控制策略的有效性。  相似文献   

5.
周思全  董希旺  李清东  任章 《航空学报》2020,41(z1):723767-723767
研究了无人机-无人车异构系统时变输出编队控制与扰动抑制问题,要求多无人机与无人车在受到未知外部扰动的情况下,保持设计的输出时变编队构型。首先,对无人机与无人车进行单体运动学与动力学建模,同时建立扰动模型,并引入代数图论概念,建立异构集群系统的协同控制模型。然后,对各无人机-无人车设计了具有分层架构的分布式时变输出编队控制器,包含基于一致性理论的编队中心估计项和基于内模原理的扰动抑制补偿项。进一步分析异构系统实现输出时变编队的可行性条件,给出了分布式编队控制器的参数选取算法,并证明了时变编队控制器构成的闭环系统的稳定性。最后,通过仿真算例来验证所设计的编队控制器的有效性。  相似文献   

6.
针对环境风干扰情况下无人机编队保持精度差的问题,设计了基于邻居无人机相对状态的编队控制协议。通过定义恰当的被控输出来量化环境风干扰对多机编队的影响,将受扰多机编队控制问题转化为鲁棒H∞控制问题。基于H∞控制方法,得到了满足期望H∞干扰抑制指标的多机编队充分条件,并以线性矩阵不等式的形式给出。此外,对于僚机之间的通信拓扑为无向图的情形,可以通过只求解2个线性矩阵不等式确定控制协议。最后数值仿真结果表明,该控制协议能够有效抑制阵风干扰对多机编队的影响,提高了多机协同编队的鲁棒性。  相似文献   

7.
针对一类参数不确定模糊广义时变时滞系统,研究该系统的鲁棒稳定性控制问题。选取特殊的Lyapunov函数,给出了该系统稳定的充分条件,采用线性矩阵不等式技术,将时变时滞系统稳定性条件转化为求解一组线性矩阵不等式问题,并设计出状态反馈控制器,仿真结果说明该方法的可行性。  相似文献   

8.
均等通信时滞下多UAV协同编队控制   总被引:2,自引:1,他引:1  
多无人机(UAV)系统编队控制中,时滞是无法回避的问题,研究时滞对多UAV编队形成和系统稳定性的影响,具有重要理论价值。重点研究均等通信时滞下多UAV协同编队控制问题,并获得系统的稳定性条件。首先,设计具有均等通信时滞的协同编队控制律,得到多UAV编队系统的闭环时滞状态方程;在恒定均等时滞下,考虑到系统模型不确定性,基于线性矩阵不等式(LMI)理论得到系统的时滞依赖稳定性条件;最后,进行仿真实验,结果表明多UAV编队系统是稳定的,期望的编队队形能够形成并保持。  相似文献   

9.
研究系统矩阵中含有范数有界不确定性广义系统的H∞控制问题,通过广义系统的有界实引理分析不确定广义系统容许性以及H∞干扰衰减问题,利用线性矩阵不等式方法和Schur补定理将时变广义系统H∞控制问题转化为对定常广义系统H∞控制问题进行研究,得出了具有时变不确定性广义系统在范数有界的约束下等价于定常广义系统的结论。  相似文献   

10.
张立鹏  魏瑞轩  刘月  郭立普 《飞行力学》2012,30(1):25-28,33
针对无长机带领、具有固定无向通信拓扑的无人机编队构成控制问题,提出了一种基于"相邻"无人机状态反馈的分散最优控制方法。该方法采用Laplacian矩阵描述编队通信结构,以"相邻"无人机与编队构型间的相对状态误差构建分散最优控制模型,并通过求解具有LMI约束的线性目标最优化问题得到编队各无人机的分散最优控制律。该方法使得多无人机在分散协同的前提下,基于局部信息快速准确地形成预定编队构型,达到运动方向和速度的一致性。仿真实验验证了该方法的有效性。  相似文献   

11.
This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacecraft formation flying. First, we present the attitude synchronization tracking control algorithms and analyze the sufficient delay-dependent stability condition with the choice of a Lyapunov function when the angular velocity can be measured. More specifically, a class of linear filters is developed to derive an output feedback control law without having direct information of the angular velocity, which is significant for practical applications with low-cost configurations of spacecraft. Using a well-chosen Lyapunov-Krasovskii function, it is proven that the presented control law can make the spacecraft formation attitude tracking system synchronous and achieve exponential stability, in the face of model uncertainties, as well as non-uniform time-varying delays in communication links and different control parts. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control schemes.  相似文献   

12.
In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator saturation.Initially,a sliding mode delay-dependent attitude coordinated controller is proposed under bounded external disturbances.However,neither inertia uncertainty nor actuator constraint has been taken into account.Then,a robust saturated delay dependent attitude coordinated control law is further derived,where uncertainties and external disturbances are handled by Chebyshev neural networks (CNN).In addition,command filter technique is introduced to facilitate the backstepping design procedure,through which actuator saturation problem is solved.Thus the spacecraft in the formation are able to track the reference attitude trajectory even in the presence of time-varying communication delays.Rigorous analysis is presented by using Lyapunov-Krasovskii approach to demonstrate the stability of the closed-loop system under both control algorithms.Finally,the numerical examples are carried out to illustrate the efficiency of the theoretical results.  相似文献   

13.
In this paper, formation tracking control problems for second-order multi-agent systems (MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to form a time-varying formation while tracking those of the leader. A neigh-boring relative state information based formation tracking protocol with an unknown gain matrix and time-varying delays is presented. The formation tracking problems are then transformed into asymptotically stable problems. Based on the Lyapunov-Krasovskii functional approach, condi-tions sufficient for second-order MASs with time-varying delays to realize formation tracking are examined. An approach to obtain the unknown gain matrix is given and, since neighboring relative velocity information is difficult to measure in practical applications, a formation tracking protocol with time-varying delays using only neighboring relative position information is introduced. The proposed results can be used on target enclosing problems for MASs with second-order dynamics and time-varying delays. An application for target enclosing by multiple unmanned aerial vehicles (UAVs) is given to demonstrate the feasibility of theoretical results.  相似文献   

14.
Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.  相似文献   

15.
This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introducing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov–Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected directed information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demonstrate the effectiveness of the proposed control schemes.  相似文献   

16.
For flight control systems with time-varying delay, an H∞ output tracking controller is proposed. The controller is designed for the discrete-time state-space model of general aircraft to reduce the effects of uncertainties of the mathematical model, external disturbances, and bounded time-varying delay. It is assumed that the feedback-control loop is closed by the communication network, and the network-based control architecture induces time-delays in the feedback information. Suppose that the time delay has both an upper bound and a lower bound. By using the Lyapu- nov-Krasovskii function and the linear matrix inequality (LMI), the delay-dependent stability criterion is derived for the time-delay system. Based on the criterion, a state-feedback H∞ output tracking controller for systems with norm-bounded uncertainties and time-varying delay is presented. The control scheme is applied to the high incidence research model (HIRM), which shows the effectiveness of the proposed approach.  相似文献   

17.
本文讨论了具有时滞互联不确定组合大系统的镇定问题。这种不确定性是时变的,它可作为不确定参数及输入摄动存在于每个子系统中,也可能存在于互联项中。不确定性在假设可能知道它的边界的情况下,利用本文构造的线性分散状态反馈控制律,系统是实际可稳定的,即系统可镇定。  相似文献   

18.
In this paper, we consider the coordinated attitude control problem of spacecraft formation with communication delays, model and disturbance uncertainties, and propose novel synchronized control schemes. Since the attitude motion is essential in non-Euclidean space, thus, unlike the existing designs which describe the delayed relative attitude via linear algorithm, we treat the attitude error and the local relative attitude on the nonlinear manifold-Lie group, and attempt to obtain coupling attitude information by the natural quaternion multiplication. Our main focus is to address two problems:1) Propose a coordinated attitude controller to achieve the synchronized attitude maneuver, i.e., synchronize multiple spacecraft attitudes and track a time-varying desired attitude; 2) With known model information, we achieve the synchronized attitude maneuver with disturbances under angular velocity constraints. Especially, if the formation does not have any uncertainties, the designer can simply set the controller via an appropriate choice of control gains to avoid system actuator saturation. Our controllers are proposed based on the Lyapunov-Krasovskii method and simulation of a spacecraft formation is conducted to demonstrate the effectiveness of theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号