首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国航空学报》2021,34(4):451-464
For higher efficiency and precision manufacturing, more and more attentions are focused on the surface roughness and residual stress of machined parts to obtain a good fatigue life. At present, the in-situ TiB2/7050Al metal matrix composites are widely researched due to its attractive properties such as low density, good wear resistance and improved strength. It is of great significance to investigate the machined surface roughness, residual stress and fatigue life for higher efficiency and precision manufacturing of this new kind material. In this study, the surface roughness including two-dimensional and three-dimensional roughness, residual stress and fatigue life of milling in-situ TiB2/7050Al metal matrix composites were analyzed. It was found from comparative investigation that the three-dimensional surface roughness would be more appropriate to represent the machined surface profile of milling particle reinforced metal matrix composites. The cutting temperature played a great role on the residual stress. However, the effect of increasing cutting force could slow down the transformation from compressive stress to tensile stress under 270 °C. An exponential relationship between three-dimensional roughness and fatigue life was established and the main fracture mechanism was brittle fracture with observation of obvious shellfish veins, river pattern veins and wave shaped veins in fracture surface.  相似文献   

2.
《中国航空学报》2021,34(4):160-173
Ultrasonic vibration-assisted milling has been widely applied in machining the difficult-to-cut materials owing to the remarkable improvements in reducing the cutting force. However, analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibration-assisted milling metal matrix composites are still needed to be developed. In this paper, an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB2/7050Al metal matrix composites. During modeling, change of motion of the cutting tool, contact of tool-chip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model. Meanwhile, material properties, tool geometry, cutting parameters and vibration parameters were taken into consideration. Furthermore, the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB2/7050Al metal matrix composites. The predicted cutting forces show to be consistent well with the measured cutting forces. Besides, the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4% to 15.1%. The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB2/7050Al metal matrix composites, which was proved with general applicability.  相似文献   

3.
In situ formed TiB2 particle reinforced aluminum matrix composites (TiB2/Al MMCs) have some extraordinary properties which make them be a promising material for high performance aero-engine blade. Due to the influence of TiB2 particles, the machinability is still a problem which restricts the application of TiB2/Al MMCs. In order to meet the industrial requirements, the influence of TiB2 particles on the machinability of TiB2/Al MMCs was investigated experimentally. Moreover, the optimal machining conditions for this kind of MMCs were investigated in this study. The major conclusions are: (1) the machining force of TiB2/Al MMCs is bigger than that of non-reinforced alloy and mainly controlled by feed rate; (2) the residual stress of TiB2/Al MMCs is compressive while that of non-reinforced alloy is nearly neutral; (3) the surface roughness of TiB2/Al MMCs is smaller than that of non-reinforced alloy under the same cutting speed, but reverse result was observed when the feed rate increased; (4) a multi-objective optimization model for surface roughness and material removal rate (MRR) was established, and a set of optimal parameter combinations of the machining was obtained. The results show a great difference from SiC particle reinforced MMCs and provide a useful guide for a better control of machining process of this material.  相似文献   

4.
与外加颗粒法相比,原位自生法制备的颗粒尺寸小、表面干净且与基体界面结合强度高,使得铝基复合材料具有高比强度、高比模量以及良好的强塑性匹配等优势。因此,原位自生铝基复合材料是航空航天结构件轻量化设计的理想材料之一。从原位自生TiB2颗粒增强铝基复合材料制备、组元配比优化设计、性能与强韧化机制等三个方面总结其研究现状,同时梳理了原位自生TiB2颗粒增强铝基复合材料存在问题与未来发展方向,以期望促进原位自生铝基复合材料在民航客机等航空高端领域快速发展。  相似文献   

5.
原位自生TiB_2/Al复合材料具有密度小,比强度高,比模量大等特点,在航空航天领域具有广泛的应用前景。为探索原位自生TiB_2/Al复合材料的磨削加工性能,选用单晶刚玉SA砂轮、白刚玉WA砂轮和CBN砂轮在不同磨削参数下对TiB_2/Al复合材料进行磨削试验。首先研究了砂轮材质、转速、工件速度、磨削深度对工件表面粗糙度的影响规律;其次通过对工件表面形貌、磨屑形态、砂轮磨损的观测分析,探索了原位自生TiB_2/Al复合材料磨削表面成形机制;最后基于试验数据,给出了TiB_2/Al复合材料磨削工艺参数优选域。本研究可为颗粒增强金属基复合材料磨削加工提供基础理论支撑。  相似文献   

6.
石英纤维增强聚酰亚胺复合材料超低温铣削实验   总被引:2,自引:2,他引:0       下载免费PDF全文
石英纤维增强聚酰亚胺复合材料是一种非均匀的各向异性材料,采用传统铣削方法对其进行加工时存在刀具磨损严重、切削力较大、加工效率低等问题。为此本文采用超低温冷却铣削方法对石英纤维增强聚酰亚胺复合材料进行铣削实验,并与传统干铣削方式进行了对比,分析了包括加工表面形貌、粗糙度、切削力和刀具磨损等切削性能。结果表明:两种工况下,表面粗糙度随主轴转速的提高而降低,随切深的增加呈先降低后增大趋势;相对于干铣削,不同切削速度下超低温冷却铣削有效抑制了低速干铣削纤维起毛、高速干铣削黏结剂烧蚀缺陷,表面质量都得到改善,刀具耐用度得到提高。超低温冷却引起的复合材料切削力增大,纤维断屑方式的改变以及切削热的有效降低是提高加工质量的主要原因。  相似文献   

7.
使用PCD立式铣刀对聚合物浸渍裂解法(PIP)制备的SiC_(f)/SiC复合材料开展单因素铣削试验,通过对加工中产生的切削力和加工后的表面粗糙度进行测量,分析了铣削工艺参数对其的影响;对加工表面、纤维断口进行SEM分析,讨论了SiC_(f)/SiC复合材料加工表面的形成。研究结果表明,表面粗糙度与切削力的变化趋势相同,高主轴转速和小切削宽度有利于得到表面粗糙度较小的加工表面;近孔洞区域与远离孔洞区域的材料去除方式不同;材料中纤维发生面内偏移和层间屈曲,纤维存在多种去除方式。  相似文献   

8.
在加工过程中,相反的两相特性增加了SiC_p/Al复合材料加工难度,难以获得良好的表面质量。层和TiAlSiN涂层两种铣刀的切削性能。结果表明,在低温条件下,两种刀具的切削力增加,铣削后表面铝基体的开裂及剥落等缺陷均显著改善,加工表面损伤减小且粗糙度降低,低温铣削能获得更好的表面质量。此外,在常温与低温条件下TiAlSiN涂层比TiAlN涂层铣刀的切削力小,低温条件下TiAlSiN涂层铣刀表面完整性和切屑形貌优于TiAlN涂层铣刀。  相似文献   

9.
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milli...  相似文献   

10.
研究了轴向载荷下,对3种S iC粒子(5,20和60μm)增强的2024铝合金复合材料疲劳裂纹扩展速率及颗粒尺寸的影响。复合材料疲劳裂纹扩展速率随颗粒尺寸增加而减小。去除裂纹闭合影响后,3种复合材料间疲劳裂纹扩展速率差消除了,但是复合材料的裂纹扩展速率低于2024铝合金的。  相似文献   

11.
《中国航空学报》2021,34(4):241-252
Particle-tool interactions, which govern the synergetic deformation of SiC particle reinforced Al matrix composites under mechanical machining, strongly depend on the geometry of particle position residing on cutting path. In the present work, we investigate the influence of cutting path on the machinability of a SiCp/Al composite in multi-step ultra-precision diamond cutting by combining finite element simulations with experimental observations and characterization. Be consistent with experimentally characterized microstructures, the simulated SiCp/Al composite is considered to be composed of randomly distributed polygonally-shaped SiC particles with a volume fraction of 25vol%. A multi-step cutting strategy with depths of cut ranging from 2 to 10 μm is adopted to achieve an ultimate depth of cut of 10 μm. Intrinsic material parameters and extrinsic cutting conditions utilized in finite element simulations of SiCp/Al cutting are consistent with those used in corresponding experiments. Simulation results reveal different particle-tool interactions and failure modes of SiC particles, as well as their correlations with machining force evolution, residual stress distribution and machined surface topography. A detailed comparison between numerical simulation results and experimental data of multi-step diamond cutting of SiCp/Al composite reveals a substantial impact of the number of cutting steps on particle-tool interactions and machined surface quality. These findings provide guidelines for achieving high surface finish of SiCp/Al composites by ultra-precision diamond cutting.  相似文献   

12.
In order to fabricate a kind of high strength particulate reinforced aluminum-matrix composites, the high strength aluminum alloy 7055 was selected as a matrix. Composites reinforced with varying amounts of TiB2 particles were synthesized using the in situ method, and their mechanical properties and microstructure were analyzed. It is found that the in situ TiB2 particles sized from 50 to 400 nm uniformly disperse in the matrix. With the weight fraction of TiB2 particles increasing, the elastic modulus as well as the yield strength and the ultimate tensile strength increase, while the ductility decrease. The improvement of strength could be attributed to good bonding between TiB2 and the matrix, and also the TiB2 particles act as a barrier to dislocation.  相似文献   

13.
In order to fabricate a kind of high strength particulate reinforced aluminum-matrix composites, the high strength aluminum alloy 7055 was selected as a matrix. Composites reinforced with varying amounts of TiB2 particles were synthesized using the in situ method, and their mechanical properties and microstructure were analyzed. It is found that the in situ TiB2 particles sized from 50 to 400 um uniformly disperse in the matrix. With the weight fraction of TiB2 particles increasing, the elastic modulus as well as the yield strength and the ultimate tensile strength increase, while the ductility decrease. The improvement of strength could be attributed to good bonding between TiB2 and the matrix, and also the TiB2 particles act as a barrier to dislocation.  相似文献   

14.
采用熔铝无压浸渗复合工艺在高体份SiCp/Al复合材料制备过程中同步复合Ti合金零部件(圆柱体),研究了这种跨宏-微观尺度、超混杂铝基复合材料的微观组织及性能,特别是SiCp/Al复合材料与Ti合金零部件之间的相容性。结果表明,复合材料性能优异、组织致密,SiC颗粒分布均匀、无偏聚现象。SiCp/Al复合材料与Ti合金之间的界面结合非常紧密,Ti元素向铝合金基体一侧有一定距离的扩散,并且出现了可增强界面结合的连续、无缺陷的界面反应物薄层,SEM和XRD分析表明界面反应产物为Al2Ti,界面剪切强度超过200MPa,完全可以满足在复合材料中的Ti合金零部件处加工装配孔的要求。  相似文献   

15.
铝合金搅拌摩擦加工原位反应生成物颗粒增强机制   总被引:2,自引:0,他引:2  
在1100-H14铝合金基体表面开凹槽添加Ni粉进行搅拌摩擦加工(Friction Stir Processing,FSP),利用Ni粉在搅拌过程中的碎化及其与基体的原位反应生成的高强、高硬的金属间化合物制备强化的表面复合层。结果表明,不同于添加陶瓷颗粒的FSP工艺,Ni颗粒能在搅拌过程中充分碎化,并与铝基体原位合成金属间化合物,原位自生的增强体颗粒与基体是以金属键合的方式结合在一起,因此与基体金属间具有良好的界面相容性和界面结构,能够很大程度上改善颗粒的强化效果。增强颗粒与基体结合界面的性质对复合层硬度的影响非常显著,为了提高复合层硬度,提出了通过原位反应获得颗粒/基体的高强界面的模型。  相似文献   

16.
TiAl合金以其优异的性能被广泛应用于航空、航天制造领域,但由于TiAl合金自身的物理、化学特性,导致其切削性能较差,加工过程中容易出现工件表面烧伤、表面微裂纹等问题。为了研究TiAl合金铣削加工过程中切削工艺参数对加工表面裂纹的影响规律,设计了TiAl合金切削参数与加工表面裂纹之间的正交试验。结果表明:切削速度对TiAl合金铣削表面裂纹的影响最大,其次是切削深度和切削宽度,每齿进给量对表面裂纹的影响最小。基于遗传算法,以表面裂纹长度为目标函数,优化得到的最优参数组合为:ae=0. 2 mm、ap=0. 2003 mm/z、fz=0. 02001 mm/z、vc=20. 0004 m/min。采用优化后的参数铣削TiAl合金,发现工件表面的实际加工裂纹长度和经过算法优化的裂纹长度相差较小,该优化方法可行性较高,误差较小。  相似文献   

17.
为了探索透波性Si3N4陶瓷铣削中加工表面创成机理及加工工艺参数对其影响规律,对加工表面形貌和边缘破损特征,以及加工参数与切削力、表面粗糙度、边缘破损的映射关系等开展了试验研究。首先对加工表面形貌进行了分析,由于存在陶瓷粉末去除和破碎性颗粒去除两种形式,造成加工表面形貌结构一种体现为变化平缓,而另一种包含微裂纹、层状结构体等,且存在凹坑、沟槽等缺陷。其次研究了边缘破损形式及产生机理,当刀具运动到出口棱边处,刀尖应力集中处将产生微裂纹,并向工件侧面扩展,从而在加工表面和加工侧面诱导形成边缘破损。最后基于均匀设计试验,分析了工艺条件对加工性能的影响。结果表明:随着切削深度从0. 2增加到0. 5 mm和切削宽度从1增加到4 mm时,x轴切削力呈耦合增长,y轴切削力呈二次方增长;当切削深度和切削宽度分别为0. 2 mm和1 mm、进给速度为500 mm/min时,加工表面粗糙度值最小;转速为2 000 r/min、切削深度和切削宽度最小时,边缘破损幅值最小。此结果可为提高透波性Si3N4陶瓷铣削加工质量提供技术支撑。  相似文献   

18.
《中国航空学报》2021,34(9):37-46
SiCp/Al composites are difficult-to-cut materials. In recent years, electrical arc discharge machining has been developed to improve the machinability of these materials. However, there is a big challenge to build a satisfactory heat transfer model of SiCp/Al composites in the arc machining. This is not only because of the material property difference between the reinforcement and matrix material but also because of the micro-dimension SiC reinforcements. This paper established a new heat conduction simulation model considering the SiC particle-Al matrix interface and the phase change effects in a single-pulsed arc discharge of SiCp/Al composites. A novel SiC particle-Al matrix cell geometric model was designed firstly. Then, the temperature distribution at a different depth from the workpiece surface was analyzed, the influence of sic volume fraction on temperature field was studied, and the contribution of the interface thermal resistance and latent heat were explained. To demonstrate the validity of the new numerical model, comparisons and verifications were employed. Finally, the method of improving the model was proposed and the machining mechanism of arc discharge of SiCp/Al matrix materials was discussed. It was found that high temperature is prone to concentrate on the surface layers of the workpiece especially when the SiC fraction is high, also, the temperature fluctuates respectively at the evaporation point of aluminum and SiC, and the SiC-Al resistance has less influence on temperature distribution compared to latent heat, etc. The model build in this work improves the simulation accuracy observably compared to the previous model, and the simulation work will help to acquire a detailed mechanism of material removal of SiCp/Al composites in the arc discharge machining.  相似文献   

19.
文摘SiC_p/Al复合材料在切削加工中存在严重的表面质量问题。本文设计单因素试验,采用硬质合金涂层刀具对SiC_p/Al复合材料进行铣削加工,研究了加工参数对表面粗糙度的影响。结果表明:表面粗糙度随切削速度的增大先增大后减小,随进给量、径向切深、轴向切深的增大而增大;使用较大的切削速度、较小的进给量和不大于4 mm的径向切深能获得较好的加工表面质量。  相似文献   

20.
惯性平台环架对零件的刚度、强度的要求很高,传统铝合金材料已经很难满 足新型平台的要求。对铝基复合材料早期性能和改良后的性能进行了研究,通过仿真分析 及力学试验,验证了铝基复合材料通过二次变形加工的方法,有效提高了强度和延伸率, 应用复合材料后,在大过载情况下能够有效抵抗变形,从而提高平台系统精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号