首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
廖鹤  郑多锦  赵艳彬  祝竺  谢进进 《宇航学报》2022,43(11):1499-1510
采用非接触洛伦兹力执行器代替微推进系统,提出一种“质量块—载荷舱—平台舱”三体随动跟踪式重力卫星总体架构,避免传统低低跟踪重力场测量卫星设计中的质心波动与执行机构带来的动力学不确定性影响。其次,建立了该架构下的卫星姿轨耦合动力学模型,并在此基础上针对动力学非线性耦合项的影响,构建了一种基于带宽参数化自适应补偿的复合自抗扰控制方法,提升姿态与无拖曳控制性能。最后,采用数学仿真验证了所提出的重力卫星总体架构及其控制方法的有效性。仿真结果表明,该方法有效提升了系统的频域性能。  相似文献   

2.
一种用磁力矩器控制卫星姿态的新方法   总被引:9,自引:0,他引:9  
郑育红  王平 《宇航学报》2000,21(3):94-99
本文研究如何用磁力矩器控制极地轨道上对地指向卫星的姿态。由于地磁场的方向在轨道上周期变化,卫星的姿态动力方程是一个线性周期系统。本文采用块能控标准形和滑动模态的设计思想,提出了种开关控制方法,可以保证线性周期系统的稳定性。文中给出一个仿真例子验证了此方法的有效性。  相似文献   

3.
ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by “ARSENE students” in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.  相似文献   

4.
《Acta Astronautica》2001,48(5-12):767-776
Our laboratory is proceeding with a project to design and fabricate a nano satellite named “Gekkabijin” as “CanSat” project. This project was agreed at USSS'98 as a Japan-U.S. joint venture to make satellites for educational purpose. CanSat is, as can be imaged from the name, a Coke can shaped and sized satellite. Our CanSat “Gekkabijin” was designed to deploy a thin flexible membrane using centrifugal force. Before we can launch a CanSat into space, we had a chance to put it into sub-orbit with a support from a U.S. amateur rocket group in the name of ARLISS Project. ARLISS Project has already taken place twice in 1999 and 2000 and we carried out 6 missions. This paper describes the objectives, satellite design, experiment results and lessons learned of University of Tokyo CanSat Project.  相似文献   

5.
姜君  陈庆伟  郭健 《宇航学报》2012,33(10):1432-1438
研究用于移动载体卫星通信的动中通系统的稳定跟踪问题。选取动中通系统的三轴非线性模型为被控对象,较单轴模型更能准确地描述子系统之间的运动学与动力学特性。在执行器动态特性的基础上,设计了一种具有执行器动态补偿的非线性鲁棒控制器。该控制器不仅能够使系统在载体移动过程中隔离载体扰动的影响,精确跟踪目标卫星,而且还进一步解决了执行器动态特性对系统的影响,更符合实际动中通控制系统设计的需要。最后通过三组对比仿真结果验证了所设计控制器在不同扰动条件下的稳定跟踪性能。  相似文献   

6.
The ZDPS-1A pico-satellite, developed by the Zhejiang University, is featured with a three-axis stabilizing capability. It is 15×15×15 cm3 cube-shaped satellite with a total mass of 3.5 kg. ZDPS-1A is the first pico-satellite that has been launched successfully in China. The mission of ZDPS-1A is on-orbit system verification of student-build pico-satellite and wide range earth observation with a micro panoramic camera. A miniature momentum wheel is employed to offer gyro stiffness stability in the pitch (orbit normal) axis. Magnetic coils are employed to generate control torques to achieve the three-axis stabilization of nadir-pointing. The attitude sensors employed in the design include two three-axis magnetometers (TAMs), a three-axis gyro, and two sun sensors. Both ground simulations and on-orbit testing are conducted to verify the feasibility of the given attitude determination and control system (ADCS).  相似文献   

7.
整星零动量小卫星偏置飞行姿态解耦控制   总被引:3,自引:0,他引:3  
研究了采用反作用飞轮为执行机构的整星零动量卫星绕X轴大角度偏置飞行模式的姿态解耦控制问题。首先给出卫星姿态运动学和动力学模型,然后在控制作用中引入非线性项对姿态动力学模型线性化,进一步对线性模型进行状态反馈解耦和极点配置。最后,给出了数学仿真算例和仿真结果。  相似文献   

8.
PHYSIOLAB is a cardio-vascular laboratory designed by CNES in cooperation with IMBP, with double scientific and medical goals: -a better understanding of the basic mechanisms involved in blood pressure and heart rate regulation, in order to predict and control the phenomenon of cardio-vascular deconditionning. -a real-time monitoring of cosmonauts during functional tests. Launched to the MIR station in 1996, this laboratory was set up and used for the first time by Claudie Andre-Deshays during the French mission "Cassiopeia". The scientific program is performed pre, post and in-flight to study phenomena related to the transition to microgravity as well as the return to the earth conditions. Particular emphasis was placed on the development of the real-time telemetry to monitor LBNP test. This function was successful during the Cassiopeia mission, providing the medical team at TSOUP (MIR Control Center in Moscow) with efficient means to control the physiological state of the cosmonaut. Based on the results of this first mission, IMBP and CNES will go on using Physiolab with Russian crews. CNES will take advantage of the upcoming French missions on MIR to improve the system, and intends to develop a new laboratory for the International Space Station.  相似文献   

9.
为实现“皮星一号A”卫星无干涉分离,达到分离初始姿态要求,对皮卫星星箭分离机构运动系统进行了分析设计。首先,根据皮卫星与凸轮限位机构间的受力情况和能量守恒定理确定了凸轮轮廓尺寸和分离弹簧结构参数,在此基础上建立了星箭分离过程动力学模型,通过对动力学模型的数值计算确定满足无干涉分离条件的舱门扭簧弹性系数。星箭分离过程的仿真计算和试验校验了“皮星一号A”星箭分离机构可实现无干涉分离,皮卫星初始速度、角速率均满足所提出的各项初始分离姿态要求。  相似文献   

10.
On February 13th 2012, the LARES satellite of the Italian Space Agency (ASI) was launched into orbit with the qualification flight of the new VEGA launcher of the European Space Agency (ESA). The payload was released very accurately in the nominal orbit. The name LARES means LAser RElativity Satellite and summarises the objective of the mission and some characteristics of the satellite. It is, in fact, a mission designed to test Einstein's General Relativity Theory (specifically ‘frame-dragging' and Lense-Thirring effect). The satellite is passive and covered with optical retroreflectors that send back laser pulses to the emitting ground station. This allows accurate positioning of the satellite, which is important for measuring the very small deviations from Galilei–Newton's laws. In 2008, ASI selected the prime industrial contractor for the LARES system with a heavy involvement of the universities in all phases of the programme, from the design to the construction and testing of the satellite and separation system. The data exploitation phase started immediately after the launch under a new contract between ASI and those universities. Tracking of the satellite is provided by the International Laser Ranging Service. Due to its particular design, LARES is the orbiting object with the highest known mean density in the solar system. In this paper, it is shown that this peculiarity makes it the best proof particle ever manufactured. Design aspects, mission objectives and preliminary data analysis will be also presented.  相似文献   

11.
刘慎钊 《航天控制》2004,22(4):73-77
卫星控制系统半物理仿真是在实验室中模拟卫星在轨道上运动特性的一种试验方法 ,它通常用于验证卫星控制系统方案和性能指标。卫星控制系统半物理仿真包括将硬件接入路的卫星动力学仿真和运动学仿真。仿真计算机计算卫星的动力学和运动学方程 ;转台模拟卫星在空间的运动 ;目标模拟器用来模拟作为卫星姿态敏感器的参考目标 (太阳、地球和恒星等 )的环境特性。为了将控制系统硬件接入试验路 ,必须适当地处理一系列的关键技术。卫星控制系统多转台多模拟器半物理仿真方法适用于带有多种敏感器的复杂卫星仿真。  相似文献   

12.
《Acta Astronautica》2013,82(2):419-429
This paper describes the design and the manufacturing of a Cubesat platform based on a plastic structure.The Cubesat structure has been realized in plastic material (ABS) using a “rapid prototyping” technique. The “rapid prototyping” technique has several advantages including fast implementation, accuracy in manufacturing small parts and low cost. Moreover, concerning the construction of a small satellite, this technique is very useful thanks to the accuracy achievable in details, which are sometimes difficult and expensive to realize with the use of tools machine. The structure must be able to withstand the launch loads. For this reason, several simulations using an FEM simulation and an intensive vibration test campaign have been performed in the system development and test phase. To demonstrate that this structure is suitable for hosting a complete satellite system, offering innovative integrated solutions, other subsystems have been developed and assembled.Despite its small size, this single unit (1U) Cubesat has a system for active attitude control, a redundant telecommunication system, a payload camera and a photovoltaic system based on high efficiency solar cells.The developed communication subsystem has small dimensions, low power consumption and low cost. An example of the innovations introduced is the antenna system, which has been manufactured inside the ABS structure. The communication protocol which has been implemented, the AX.25 protocol, is mainly used by radio amateurs. The communication system has the capability to transmit both telemetry and data from the payload, in this case a microcamera.The attitude control subsystem is based on an active magnetic system with magnetorquers for detumbling and momentum dumping and three reaction wheels for fine control. It has a total dimension of about 50×50×50 mm. A microcontroller implements the detumbling control law autonomously taking data from integrated magnetometers and executes pointing maneuvers on the basis of commands received in real time from ground.The subsystems developed for this Cubesat have also been designed to be scaled up for larger satellites such as 2U or 3U Cubesats. The additional volume can be used for more complex payloads. Thus the satellite can be used as a low cost platform for companies, institutions or universities to test components in space.  相似文献   

13.
This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to “reinvent the wheel”. NASA’s new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle, and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006, a project at NASA’s Johnson Space Center was started to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today’s engineers and managers. This “Apollo Mission Familiarization for Constellation Personnel” project is accessible via the web from any NASA center for those interested in learning answers to the question “how did we do this during Apollo?”  相似文献   

14.
针对柔性航天器上大尺寸柔性结构的振动抑制问题,提出在结构上分布安装剪刀构型的微型控制力矩陀螺(CMG),实现空间柔性结构的振动抑制.首先建立携带分布式剪刀构型CMG的约束边界大尺寸空间结构的动力学方程,然后基于Lyapunov方法设计剪刀构型CMG的框架轴操纵律,结合工程实际的"死区"现象,对所设计操纵律进行改进.最后...  相似文献   

15.
Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Many developing countries formally recognize the advantages of space resources and pursue national level activity to harness them. There is limited data or documentation on the space activities of developing countries. Meanwhile, traditional approaches to summarize national space activity do not necessarily capture the types of activity that developing countries pursue in space. This is especially true if they do not have a formal national space program or office. Developing countries pursue national space activity through activities of many types—from national satellite programs to commercial use of satellite services to involvement with international space institutions. This research aims to understand and analyze these trends. This paper introduces two analytical frameworks for evaluating space activity at the national level. The frameworks are specifically designed to capture the activity of countries that have traditionally been less involved in space. They take a broad view of space related activity across multiple societal sectors and disciplines. The discussion explains the approach for using the frameworks as well as illustrative examples of how they can be applied as part of a research process. The first framework is called the Mission and Management Ladders. This framework considers specific space projects within countries and ranks them on “Ladders” that measure technical challenge and managerial autonomy. This first method is at a micro level of analysis. The second framework is called the Space Participation Metric (SPM). The SPM can be used to assign a Space Participation score to countries based on their involvement in various space related activities. This second method uses a macro level of analysis. The authors developed both frameworks as part of a long term research program about the space activities of developing countries. This aspect of the research focuses on harnessing multiple techniques to summarize complex, multi-disciplinary information about global space activity.  相似文献   

16.
针对低低跟踪(SST-LL)重力测量卫星K频段测距(KBR)系统相位中心在轨标定问题,提出了一种应用预测卡尔曼滤波算法的KBR系统在轨标定算法。首先,以磁力矩器和姿态控制喷气发动机为执行部件,对一颗卫星施加一定的组合力矩,使其绕另一颗卫星进行周期性姿态机动;然后,将星敏感器数据代入预测卡尔曼滤波算法中估计出卫星姿态;最后,根据KBR系统观测值与卫星姿态角之间的关系,利用扩展卡尔曼滤波算法估计出KBR系统相位中心的位置。数值仿真结果表明:KBR系统相位中心可以被实时估计,当存在较大的卫星姿态动力学模型误差时,KBR系统相位中心的标定误差仍在0.3mrad以内,证明此算法估计精度较高且鲁棒性强。  相似文献   

17.
路遥  刘晓东  路坤锋 《宇航学报》2021,42(1):132-140
针对非仿射高超声速飞行器姿态控制问题,提出了一种基于反步法的非线性控制方法。首先,通过干扰观测器估计攻角动态中的扰动量,在此基础上设计了俯仰角速度虚拟控制指令。然后,针对含有非仿射项的参数不确定的俯仰角速度动态函数,将其视为一个扩张状态,通过状态观测器对其进行估计。接着,基于动态逆方法设计了升降襟副翼的控制律并基于李雅普诺夫方法证明了闭环系统的稳定性。采用指令滤波器避免反步法应用中虚拟控制指令微分项的“复杂性爆炸”问题,并得到虚拟控制指令的一阶和二阶导数信号。所提方法能够适用于变速变高飞行模式。最后,通过对比仿真实验,验证了所设计控制方法的有效性。  相似文献   

18.
The French Space Agency (CNES) is currently operating thirteen satellites among which five remote sensing satellites. This fleet is composed of two civilian (SPOT) and three military (HELIOS) satellites and it has been recently completed by the first PLEIADES satellite which is devoted to both civil and military purposes. The CNES operation board decided to appoint a Working Group (WG) in order to anticipate and tackle issues related to the emergency End Of Life (EOL) operations due to unexpected on-board events affecting the satellite. This is of particular interest in the context of the French Law on Space Operations (LSO), entered in force on Dec. 2010, which states that any satellite operator must demonstrate its capability to control the space vehicle whatever the mission phase from the launch up to the EOL. Indeed, after several years in orbit the satellites may be affected by on-board anomalies which could damage the implementation of EOL operations, i.e. orbital manoeuvres or platform disposal. Even if automatic recovery actions ensure autonomous reconfigurations on redundant equipment, i.e. setting for instance the satellite into a safe mode, it is crucial to anticipate the consequences of failures of every equipment and functions necessary for the EOL operations. For this purpose, the WG has focused on each potential anomaly by analysing: its emergency level, as well as the EOL operations potentially inhibited by the failure and the needs of on-board software workarounds… The main contribution of the WG consisted in identifying a particular satellite configuration called “minimal Withdrawal From Service (WFS) configuration”. This configuration corresponds to an operational status which involves a redundancy necessary for the EOL operations. Therefore as soon as a satellite reaches this state, a dedicated steering committee is activated and decides of the future of the satellite with respect to three options: a/. the satellite is considered safe and can continue its mission using the redundancy, b/. the EOL operations must be planned within a mid-term period, or c/. the EOL operations must be implemented as soon as possible by the operational teams. The paper describes this management and operational process illustrated with study cases of failures on SPOT and PLEIADES satellites corresponding to various emergency situations.  相似文献   

19.
The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or “-Bdot” without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.  相似文献   

20.
对空间目标(神舟七号飞船)动态成像的伴随卫星系统的有关技术条 件和参数进行了分析和设计。设计双焦距光学系统适应大纵深范围成像,利用偏置动量稳定 减小释放后初始姿态扰动度,配合章动特点扩大观测视场,采用姿态导引律实现对观测 目标 的姿态指向跟踪,并给出满足清晰观测的相机参数设计。该卫星系统设计成功应用于神舟七 号载人飞行任务,并成功完成了首次对飞船在轨运行的全景照相观测,在轨试验结果表明伴 星系统各项技术条件和参数的设计是合理的,可以很好的完成对目标的清晰成像。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号