首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 532 毫秒
1.
在相似理论指导下, 对旋转系流动与换热方程以及边界条件进行无量纲化, 得出了描述旋转气膜冷却效率与换热系数的一系列准则, 设计并建立了实验台, 解决了从高速旋转部件上引出测试信号而不失真及对旋转试件进行强电加热等问题, 并在旋转情况下, 对常用的平板型叶端气膜冷却效率及其换热系数进行了实验研究, 并总结出可供工程参考的准则公式.   相似文献   

2.
通过对带有90°倾角圆柱形交错孔排的涡轮叶片模型进行数值模拟,得到了不同主流雷诺数、旋转数和吹风比情况下前缘面与后缘面侧的气膜冷却流动与换热特性及各气膜孔流量系数的分配规律.结果表明,冷气受到离心力与哥氏力的共同作用向高半径处发生偏转,导致壁面冷却效率降低;雷诺数的增大会削弱气膜冷却效果,高吹风比则不利于气膜孔下游区域的冷却.各气膜孔的流量系数随吹风比的增大而增大,随旋转数的提高而减小.在后缘面侧,相同工况下各气膜孔的流量系数明显高于前缘面侧对应气膜孔的值.   相似文献   

3.
为了研究在旋转状态下温度比对气膜与主流掺混区域的影响,采用了数值模拟的方法对此进行了分析.结果表明:与静止状态相比,气膜出流在旋转状态下会发生偏转.当温度比固定,随着转速的增加,吸力面上气膜覆盖区域向高旋转半径方向偏转;但在压力面上,覆盖区域向低旋转半径方向偏转.在旋转速度固定时,随着冷却气膜和燃气温度比的增加,气膜覆盖区域向高旋转半径方向偏转.旋转同时会降低气膜冷却效率,而温度比对此的影响却很小.   相似文献   

4.
采用数值模拟方法,对旋转状态下曲率表面的气膜冷却进行研究.通过不同的曲率半径和吹风比,得到了冷却效率的分布情况,从而获得吹风比和曲率两因素对气膜冷却效率的影响规律.研究结果表明:低吹风比下,冷却效率较好;高吹风比下,气膜容易脱离壁面;凸表面的冷却效率随着曲率半径的增加而逐渐减小;而凹表面的冷却效率随着曲率半径的增加而逐渐增大;凸表面上曲率的影响作用随着旋转数的增加而逐渐弱化;而凹表面上曲率的作用随着旋转数的增大而逐渐增强.  相似文献   

5.
曲率对旋转态气膜冷却效率影响的数值模拟   总被引:1,自引:0,他引:1  
通过对旋转状态下曲率叶片模型上气膜冷却现象的流动和换热进行数值模拟,得到了不同主流雷诺数、吹风比和旋转数情况下吸力面和压力面上的冷却效率分布.计算选用κ-ω和SST(Shear-Stress Transport)湍流模型,主流雷诺数Re=3 198.4~6 716.6,吹风比M=0.2~1.2,旋转数Rt=0~0.015 9.结果表明:旋转数的增大导致气膜孔下游中心区域的冷却效率下降,但使压力面整场的冷却效果略有提高;吹风比的增大使得吸力面和压力面上的冷却效率逐渐降低,主流雷诺数的变化对壁面整体冷却效果则影响不大.此外,相同工况下吸力面上的冷却效率要高于压力面上的对应值.  相似文献   

6.
旋转状态下涡轮叶片压力面气膜冷却特性   总被引:3,自引:0,他引:3  
通过1.5级涡轮叶片旋转气膜冷却实验,揭示了整级涡轮叶片在旋转状态下的气膜冷却规律.实验中,主流雷诺数为8×104,旋转数分别为2.092,2.324和2.448,吹风比从0.3到3.0变化,冷却工质分别采用空气和二氧化碳,对应射流主流密度比分别为1.03和1.57.叶片表面喷有宽幅液晶,通过高精度CCD相机得到表面温度场.结果表明:压力面上,气膜冷却效率随吹风比的增大而升高,随旋转数的增大而降低;气膜轨迹向高半径方向偏转,偏转程度随旋转数的增大而加剧;提高射流主流密度比,有利于提高冷却效率.  相似文献   

7.
旋转对气膜冷却覆盖区域的影响   总被引:2,自引:1,他引:1  
气膜冷却是应用于航空发动机上的冷却技术,旋转是影响气膜与主流掺混区域的重要因素.在旋转气膜外换热实验台上进行的平板气膜冷却实验对此问题进行了研究.与静止叶片相比,气膜出流在旋转叶片表面会发生展向偏离.在压力面,转速增加,气膜出流先向低旋转半径方向偏转,后向高旋转半径方向偏转;在吸力面,气膜出流向高旋转半径方向偏转.动量流量比固定,当密度比增加时,压力面气膜出流轨迹向低旋转半径方向偏转加剧;吸力面气膜出流轨迹向高旋转半径方向的偏转也增大.   相似文献   

8.
旋转状态下叶片前缘复合换热实验   总被引:1,自引:0,他引:1  
通过液晶示温瞬态实验方法,对旋转状态下涡轮叶片前缘带气膜出流的冲击冷却结构的换热特性进行了研究,获得了哥氏力、离心力对复合换热效果的影响.实验参数:射流进口雷诺数Re=4 000,旋转数Ro=0~0.139.实验结果表明:随着旋转数的升高,实验模型的整体换热效果逐渐减弱,在旋转数为0.139时,与静止状态相比冲击面平均努塞尔数Nu下降了33%,压力面和吸力面分别下降了20.5%和7.5%;哥氏力的作用加速了射流的扩散,是造成旋转换热减弱的主要原因;哥氏力和离心力的共同影响使得吸力面的换热好于压力面;气膜孔的存在改变了流动结构,极大的增强了孔周边区域的换热效果.   相似文献   

9.
旋转状态下涡轮叶片前缘的流动与换热   总被引:4,自引:0,他引:4  
用数值模拟的方法对旋转状态下涡轮叶片前缘冷却结构进行了数值研究,该结构由进气腔、叶片尾缘块和前缘块构成,对此结构不同的旋转速度情况进行了计算,根据计算结果分析了旋转对涡轮叶片前缘流动与换热的影响.计算结果表明,旋转状态下带气膜出流的冲击流动中,前尾缘冲击面的换热随着转速的增加而减小,且尾缘冲击面的换热比前缘冲击面的换热要好;同时前尾缘冲击面换热的差别随着转速的增加将越来越小.  相似文献   

10.
气膜冷却是应用于航空燃气轮机上的冷却技术,旋转及表面曲率是影响气膜与 主流掺混区域的重要因素,通过数值计算方法对旋转状态下曲率对气膜与主流掺混区域的影 响进行了研究,湍流模型选取了k-ω模型.增加旋转速度,会引起吸力面气膜的分离; 固定转速,降低表面曲率半径,压力面气膜发生分离,吸力面气膜冷却效果得到改善.当动 量流量比在小于1的范围内变化时,旋转只改变压力面气膜与主流掺混区域的分布,而对吸 力面没有影响.   相似文献   

11.
3种转角下旋转U形方通道的局部换热   总被引:5,自引:1,他引:4  
在旋转数为0~0.26内用实验方法研究了转角对旋转U形方截面通道换热特性的影响.3种通道转角分别为0°,22.5°,45°.通道转角的变化引起了通道内哥氏力二次流的变化,继而导致通道各表面换热的变化.结果表明:随通道转角的增大,前缘与后缘之间努塞尔数的差异减小,而内侧面与外侧面之间的努塞尔数差异增大;在低旋转数下,转角的变化对U形通道换热的影响较小,但高旋转数下,转角的变化对U形通道换热的影响变得明显.   相似文献   

12.
用大涡模拟的方法考察了静止和旋转状态下有直径4mm,35°流向倾斜圆柱孔的平板上气膜冷却的流动和换热,将静止状态预测的速度型与实验数据进行对比验证了计算结果的合理性.在固定吹风比为0.5、冷气进口雷诺数为2 588的情况下,静止和旋转状态的涡量分布出现明显差异,且旋转状态射流与主流相互作用的剪切层沿展向偏离气膜孔的几何中心线,使得原有对转涡对不再关于孔中心线对称分布,漩涡识别技术也发现典型的涡结构受旋转影响发生形态和运动规律的改变,进而影响湍流结构对主流和冷气掺混的作用.  相似文献   

13.
在旋转状态下,研究了涡轮内冷蛇形通道的非稳态换热特性.实验主要针对旋转状态下,通道内流量的变化和系统旋转速度的变化来进行的.结果表明:对于旋转通道的非稳态过程,换热系数的变化呈波动变化过程,且主要发生在实验参数变化的阶段.加速旋转时,角加速度力的作用会加强进气通道前缘面的换热,而降低后缘面的;减速旋转时,情况相反.而且,角加速度力的作用效果容易在旋转开始变化的时刻显现.当旋转速度在2个值之间往复时,换热系数变化呈现滞后环状,旋转速度越高滞后环越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号