首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flight qualification of the multicell common pressure vessel (CPV) nickel-hydrogen (Ni-H2) battery is discussed. The battery has completed full flight qualification, including random vibration at 19.5 g for two minutes in each axis, electrical characterization in a thermal vacuum chamber, and mass-spectroscopy vessel leak detection. A first launch is scheduled in 1992. Several design variations, ranging from 9 Ah to 125 Ah and 12 to 32 V, have been developed and prototypes fabricated. Designs for smaller capacity, smaller diameter (6.4-8.9 cm), and higher voltage (up to 100 V) are in progress. The CPV battery offers cost and weight savings of up to 30% as compared to traditional nickel-cadmium (Ni-Cd) and individual pressure vessel (IPV) Ni-H2 batteries. The fully qualified design provided a 50% weight savings over its Nd-Cd predecessor for the same application. Its reduced volume also provides a significant advantage over IPV technology. Resistance data show a further advantage  相似文献   

2.
A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included: (1) packaging within the Delta II launch vehicle envelope; (2) deployment and start-up operations for the SAMTEC; (3) SAMTEC operation during all mission phases; (4) satellite field of view restrictions with satellite operations; and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight, size, and operations, Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle, The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. Our preliminary assessment indicates that the solar generator design is scaleable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m2 are anticipated for a mission duration of 10 to 12 years in orbits with high natural radiation backgrounds  相似文献   

3.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   

4.
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 wh/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, Earth observation, resource mapping, and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS  相似文献   

5.
The zinc bromine battery is a high energy density battery that utilizes low cost materials. The battery is of unique construction utilizing plastic storage tanks for the zinc bromide electrolyte and plastic bipolar electrode stacks. This paper briefly describes the zinc bromine battery technology and the experience gained in installing and operating an electric vehicle with this advanced system. The described electric vehicle (The “T-Star”) was tested in March 1993 on the Chrysler Proving Grounds in Phoenix, Arizona and it participated in the May 1993 American Tour de Sol capturing second place over all and first place in the student division  相似文献   

6.
Nickel-zinc battery technology is being developed for commercial applications requiring high energy density and high power capability. Development cells have demonstrated the ability to deliver over 60 Watt-hours per kilogram at the one hour rate. Cycle life has been improved to more than 600 cycles at 80% depth of discharge by using a patented, reduced solubility zinc electrode and an improved sealed cell design. More than 8000 charge/discharge cycles at 10% depth-of-discharge have been completed. Large quantities of sealed prismatic cells have been manufactured, including a 140 cell, 220 V battery for a hybrid electric vehicle (HEV)  相似文献   

7.
The fiber plaque technology used in the alkaline Ni-Cd battery system known as FNC (fiber nickel cadmium) is discussed. An advanced design called FNC-Recom, which contains additional fiber plates that are used as a recombination device for rapid oxygen consumption, is described. The FNC-Recom cell design is explained, and performance data and experiences with their use in electric vehicles are reported  相似文献   

8.
The United States Navy has flown Valve Regulated Lead-Acid Batteries (VRLA) for approximately 18 years. The first VRLA aircraft batteries were cylindrical cell design and evolved to a prismatic design to save weight, volume, and to increase rate capability. This paper discusses the next generation of the VRLA aircraft battery. The HORIZON composite grid VRLA design reduces weight, increases high rate performance, and is expected to increase service life. This paper discusses the weight reduction over the present 30 Ah prismatic VRLA aircraft battery design; improvements in high rate engine start performance, and present status of the development effort. Finally, the paper discusses the applications for the 30 Ah composite grid VRLA aircraft battery, and shows the future application opportunities for light-weight VRLA, both in the military and commercially  相似文献   

9.
This paper presents a design concept for an azimuth and an elevation antenna suitable for the light weight Portable Approach Landing System (PALS). The proposed design complies with the requirements of the International Civil Aviation Organization (ICAO) Annex 10. Based on a proven technology, the proposed design offers a low risk and a cost effective approach  相似文献   

10.
Evaluation of active hybrid fuel cell/battery power sources   总被引:1,自引:0,他引:1  
Hybrid fuel cell/battery power sources have potentially widespread uses in applications wherein the power demand is impulsive rather than constant. Interposing a dc/dc converter between a fuel cell and a battery can create two configurations of actively controlled hybrid fuel cell/battery power sources. Those two configurations are compared using both theory and experiment with special attention to the peak power enhancement, and power losses in the converter. Both of the defined configurations were built, using a 35 W polymer electrolyte membrane (PEM) fuel cell, an 8-cell lithium-ion battery pack, and a high-efficiency power converter. Both two configurations yielded a peak power output of 135 W, about 4 times as high as the fuel cell alone could supply, with only a slight (13%) increase of weight. The converter losses were quantitatively analyzed. Which of the two configurations yields a smaller loss depends on the load power demand characteristics including peak power and load duty ratio. The study results provide guidance for the design of hybrid sources according to the particular load power requirements.  相似文献   

11.
New battery applications ranged from an implanted battery that powers an artificial heart, to powering a seismic sensor behind an oil-well drilling bit as it grinds through rock looking for oil-bearing structure. These applications require high reliability that justifies the cost of thorough qualification testing, production control, acceptance testing of every cell, and tracking every cell by its serial number through its lifetime. Electric vehicle developments ranged from electric scooters for commuting to work in Europe to electric cars connected to the electric grid when not being driven. Availability of their battery energy for carrying load peaks is so valuable that the electric utility being supported could offer to replace the vehicles batteries whenever they wear out, with no cost to the car owner.  相似文献   

12.
The nickel-hydrogen battery, developed in the early nineteen-seventies as an energy-storage subsystem for commercial communication satellites, is discussed. The advantages offered by nickel-hydrogen batteries, including long life, low maintenance and high reliability, make it very attractive for terrestrial applications such as stand-alone photovoltaic systems. The major drawback to the wider use of the nickel-hydrogen battery is its high initial cost. A 7-kWh battery has been on test since January 1988 using a flat-plate photovoltaic array for charging. The cell, battery design and test methods are briefly described, and the results of cycling and solar tests are presented. It is concluded that the battery is well suited for remote solar applications  相似文献   

13.
张茂权  陈海昕 《航空学报》2021,42(3):625085-625085
小型电动无人机通常采用锂电池、无刷电机和螺旋桨组成能源动力系统,飞行过程中锂电池的实际工作电压发生变化,但飞机的总重量不变,其航程航时的估算方法与传统的燃油飞机有所不同。为了准确评估动力系统对飞机设计的影响,建立了以锂电池为动力的电动飞机推进系统模型,通过与实验数据比较,验证了各部分模型的准确性。利用该动力系统模型,对某款小型电动无人机进行了航程和航时估算,结果表明本文的建模方法准确有效,航程航时估算接近实验数据,可作为小型电动无人机设计的重要参考。  相似文献   

14.
小型电动无人机动力系统设计和优化   总被引:4,自引:0,他引:4  
小型电动无人机由于使用维护方便,可靠性高,噪声小,无污染等特点,具有较高的应用价值。然而电池的能量密度远低于燃油,动力系统在起飞重量中占较大比重,在初始设计中就需要准确估算动力系统重量和性能,以保证续航性能。通过建立动力系统中电池、无刷电机和调速器、螺旋桨三个部分的数学描述,提出动力系统的性能估算和设计方法,以及优化准则。实验表明,方法具有一定精度,可以为无人机的初步设计和动力系统选择提供依据。  相似文献   

15.
Advanced Military aircraft operational requirements demand an ever increasing variety and quantity of Stores, coupled with continuous improvement in mission success, safety of operation, aircrew and groundcrew workload, interoperability and ground support facilities. Until now these ever more demanding requirements have been met by costly customized stores management system designs. GEC Avionics has surveyed the potential SMS requirements of a comprehensive range of aircraft and weapon types, in order to define a universal SMS design concept based on system availability, integrity and reliability, operational functions, peripheral interfaces and maintenance/human factors. This advanced concept not only includes provision for all existing weapon types but also has growth potential for the evolving MIL-STD-1760 weapon interfaces. System interface requirements have been rationalized in order to achieve a Modular Stores Management System (MSMS) design based on major factors such as cost, mission requirements and customer specifications. The key work for a successful MSMS design is flexibility and GEC Avionics has evolved a set of standard modules which can be packaged to satisfy specific customer needs. Typically, the standard modules provide over 80% of the hardware in every Stores Management application. The MSM concept features much reduced development costs and timescales, commonality between aircraft types minimizing parts inventory, VLSI technology providing high reliability and a common product support and maintenance philosophy. The MSM design offers a highly cost effective low risk concept for meeting the needs of modernization and new aircraft programs.  相似文献   

16.
Battery electric vehicles (EVs) present a particular challenge to the development of more efficient and effective heating and cooling systems for automotive applications. Because heating-ventilating-air-conditioning (HVAC) systems are electrically powered, vehicle range is reduced when the HVAC system is operating. The alternative solutions to HVAC battery electric vehicles are identified and evaluated. These include a basis for determining HVAC boundary design assumptions and showing mathematical methods for estimating the HVAC load and energy requirements, and evaluation of the new European and Japanese approaches to wintertime heating, such as NaS battery, motor and component waste heat recovery, electric seat warmer, radiant foot warmer, electric windshield and backlight defrost, molten salt latent heat storage, metal hydride hydrogen storage and catalytic heater, and liquid fueled heater  相似文献   

17.
In order to realize the operational and service cost savings through the use of rechargeable batteries, the dismounted soldier is burdened with the weight, volume and/or charging logistics of the batteries. By providing the soldier with a high energy density source and a lightweight compact battery charger, the burden imposed by rechargeable batteries in the forward field can be minimized. Zinc-air batteries have the potential for meeting the energy demands of forward battlefield charging. They are attitude insensitive, have a high specific energy and are inherently inexpensive, lightweight and safe  相似文献   

18.
基于非概率模型的结构稳健可靠性设计方法   总被引:11,自引:0,他引:11  
郭书祥  吕震宙 《航空学报》2001,22(5):451-453
 基于非概率可靠性理论,将稳健设计和稳健可靠性的思想和方法用于结构设计,提出了结构的稳健可靠性设计方法。把结构设计归结为满足可靠性要求的多目标优化。其中,以非概率可靠性指标为约束,以极小化结构重量 (或造价)和极大化对不确定因素的稳健性为目标。目的在于使结构在满足可靠性要求的前提下,其重量 (或造价)和对不确定因素的稳健性达到协调最优。在不确定参量的已知数据很少的情况下,本方法为结构的可靠性设计提供了一种可能的选择。数值算例说明了文中方法的应用。  相似文献   

19.
张晓辉  刘莉  戴月领 《航空学报》2019,40(7):222793-222793
开展了燃料电池/锂电池(简称燃锂)混合动力无人机的能源管理与飞行状态耦合研究。综合顶层飞行任务规划与底层能源系统管理,以动力系统模型为耦合点联立能源系统与无人机运动方程,建立能源状态与运动状态耦合模型。针对燃锂混合最紧密的爬升过程,以迎角、转速和燃料电池的放电功率作为控制变量,建立了燃料消耗最小的能源管理与航迹规划耦合最优控制问题,研究不同爬升高度对最优控制过程的影响,并与模糊控制能源管理策略进行对比分析。针对大功率短时爬升和小功率长时巡航的典型任务特点,建立了燃锂最优混合问题。研究了最优的锂电池容量和燃料电池功率水平的混合量,以及爬升和巡航两阶段最优功率分配和飞行状态,分析了不同巡航目标高度对最优混合量和飞行状态的影响。结果表明:采用能源与航迹耦合的最优控制策略在给出最优功率流分配的同时,能够很好地兼顾飞行状态控制;对燃锂混合和飞行状态的综合优化可以有效地处理爬升和巡航阶段的能源需求矛盾,在给出最优燃锂混合量和飞行状态的同时,降低整个任务过程的燃料消耗。  相似文献   

20.
A summary of the Hubble Space Telescope (HST) nickel-hydrogen (NiH/sub 2/) battery performance from launch to the present. Over the life of HST vehicle configuration, charge system degradation and failures, together with thermal design limitations, have had a significant effect on the capacity of HST batteries. Changes made to the charge system configuration to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号