首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 122 毫秒
1.
采用数值模拟方法对不同雷诺数下静止状态涡轮叶片前腔带气膜孔出流的冲击流动与换热特性进行了研究.分析了叶片前缘冲击流动产生的不同涡团对其内表面换热的作用机理.计算结果表明:相同雷诺数下,叶片前缘内表面气膜孔附近的换热强化比高于通道的平均值.随着雷诺数增加,换热强化比有所提高.冲击流动与通道流动耦合而形成的波浪形涡区,极大地扩展了冲击强化换热区域.气膜孔出流的抽吸作用对冲击流产生影响,进一步扩大了冷却空气在前缘内表面的覆盖范围.气膜腔叶根处纵向截面的涡团阻碍了冷气向叶根方向扩展,降低了冷却效率;而横向截面的涡团则促进冷气与壁面热气的掺混,提升了换热效果.   相似文献   

2.
为探究下表面射流关键参数对超临界翼型气动性能的影响,采用雷诺平均NavierStokes(RANS)方程与Spalart-Allmaras(S-A)湍流模型进行数值模拟。通过比较基准RAE2822翼型与下表面射流翼型的流场,验证下表面射流能够在翼型后缘诱导产生逆时针分离涡,带动流线向下偏折,增加了翼型的等效弯度,同时加大前缘的吸力峰,从而提高翼型的气动性能。进一步探究射流位置、射流动量系数、射流角度、马赫数等关键参数对RAE2822翼型气动性能的影响规律。结果表明:给定状态下,下表面射流的位置越靠后,动量系数越大,翼型的气动性能越优。下表面射流在α=0°和2°时的最优射流角度为110°,在α=4°时的最优射流角度为160°,且在最优射流角度下能有效提高翼型马赫数在0.3~0.6范围内的气动性能。  相似文献   

3.
火星的稀薄大气环境迫使无人机在亚临界雷诺数范围工作,低雷诺数层流分离问题给无人机气动性能带来极其不利的影响。同时,火星大气的声速较低,使无人机运行的马赫数更高,压缩效应增强并可能产生激波。为研究火星环境下翼型局部振动的流动控制作用,采用基于动网格的数值方法对非定常流场进行模拟。选取NACA5605低雷诺数薄翼型,雷诺数为1.5×104,马赫数为0.43和0.63。时均流场和时均气动力系数结果显示:翼型局部振动能够明显减少时均分离区的大小,起到增升减阻的作用。非定常流场表明流动控制机理在于振动产生的涡流运动抑制了翼型尾缘附近的层流分离。研究了不同振幅、频率和振动位置下的流动控制效果。最佳参数下,马赫数为0.43时升阻比最多提高24.7%,马赫数为0.63时升阻比最多提高52%。  相似文献   

4.
低雷诺数涡轮内部流场分析   总被引:8,自引:0,他引:8  
利用三维数值模拟手段研究涡轮内部流动.对比分析了不同飞行高度工作时涡轮内部流场结构的差异,以反映雷诺数的降低对流动结构和性能的影响.结果表明:在高空工作环境下,雷诺数下降近一个量级,负荷分布发生变化,叶片吸力面发生大范围分离,二次流以及径向掺混明显增强,由此导致涡轮性能恶化,效率急剧下降,这些因素在低雷诺数涡轮气动设计中需给予更多的关注.同时指出,负荷分布形式的选择对低雷诺数涡轮设计有重要意义.  相似文献   

5.
采用数值模拟的方法研究了不同后掠角三角翼的静态地面效应,通过对气动力和流场特性的分析发现,随着后掠角的减小,地面对迎风面下流动的阻滞作用增强,地效导致的迎风面气动力增量也随之增大。地效导致的背风面气动力增量同样随着后掠角的减小而增大,但在不同的后掠角范围内,地效诱导背风面气动力增量的机理不同:中大后掠角下,其主要通过增强前缘涡强度诱导更大的吸力,而小后掠角下,其主要通过促进前缘涡向内扩散增大吸力范围。   相似文献   

6.
针对各种飞行器大舵偏下出现的流动分离问题,在北航D4风洞对旨在消除舵面流动分离的舵面前缘吹气技术进行了研究,为了降低控制分离所用的吹气量,吹气点设置在舵面前缘气流分离点处.应用粒子图像测速(PIV,Particle Image Velocimetry)技术,分析了舵面绕流在吹气量由小变大过程中所经历的3个不同演化阶段;由测压得到的舵面压力分布则显示,前缘吹气造成的引射作用使前缘吸力峰随吹气量增大而增大,这是前缘吹气能够使舵面升力增大的主要机理.实验结果还表明,前缘吹气可明显提高舵面升力,同时也可以显著降低舵面阻力.  相似文献   

7.
角区三维漩涡流动的新分离结构   总被引:2,自引:0,他引:2  
分别用数值计算和PIV(Particle Image Velocimetry)实验方法研究角区层流边界层三维定常分离的流动结构,证实了角区确实存在有别于传统分离现象的附着鞍点结构,对称面上游的流线并非从壁面向上抬起从壁面分离,而是经由空间某个奇点向壁面附着.角区马蹄涡的传统分离鞍点结构和附着鞍点结构之间存在着一定的演化规律,影响参数包括模型头部钝度、边界层厚度和雷诺数.一定的边界层和雷诺数条件下随着模型头部钝度减小,角区马蹄涡将从传统的分离鞍点结构逐步过渡为附着鞍点结构;对一定的模型若雷诺数越大、边界层越厚则角区流动越趋向于传统的分离鞍点结构,反之则倾向于附着鞍点结构.  相似文献   

8.
前体非对称涡Re效应初探及其风洞模拟技术   总被引:1,自引:0,他引:1  
对不同长细比(11和6.15)的细长旋成体模型在低速风洞中完成了亚临界和 临界雷诺数(Re)的测压实验研究.结果表明,只要后体尾部截断至离二涡区足够远,就不会影响由前体二涡主控的多涡系结构,并且头部扰动与非对称涡响应之间的相关关系也保持不变,这为在常规低速风洞中通过增大旋成体直径、减小长细比来扩大Re实验范围提供了实验依据.基于此技术,临界Re下低速实验结果表明细长旋成体在层流和转捩分离区的截面压力分布有明显的区别,导致在临界Re内的侧向力较亚临界显著减小,而且头部扰动对背涡流动的主控作用明显减弱,单孔位微吹气扰动主动控制技术不再适用.   相似文献   

9.
为了研究高雷诺数下圆柱绕流边界层的转捩现象和圆柱尾迹近壁区的流动特征,首先通过在典型雷诺数下采用Transition SST四方程转捩模型模拟圆柱绕流得到的结果与实验结果及采用SST k-ω两方程湍流模型模拟结果的对比分析,验证了Transition SST模型在模拟高雷诺数下圆柱绕流的优越性,并较为准确地预测出了圆柱绕流边界层的转捩现象及尾迹近壁区的流动特征。然后分别对亚临界区、临界区、超临界区和过临界区的圆柱绕流问题进行了数值模拟,分析了不同雷诺数下圆柱绕流的流场结构及圆柱表面压力系数、摩擦力系数的变化规律,研究了圆柱绕流近壁区的流动特征、边界层转捩的流动机理、转捩位置及其随雷诺数的变化规律。结果表明,亚临界区二维圆柱绕流边界层发生层流分离,无分离泡和转捩现象;临界区和超临界区二维圆柱绕流边界层先产生了分离泡现象,之后流动发生了转捩并在转捩后发生湍流分离;过临界区二维圆柱绕流边界层流动在转捩之后发生湍流分离,无分离泡现象;在临界区、超临界区和过临界区,二维圆柱绕流边界层转捩位置随雷诺数增大向前驻点移动。  相似文献   

10.
相对于光滑翼型,波纹状翼型的气动特性呈现出一些独特现象。为了深入探索这种布局的气动特点,在前期风洞试验的基础上,以NACA0030翼型为基础,设计了一组具有不同外形特征的波纹状翼型,开展了非定常数值模拟工作,详细研究了低雷诺数(Re=12×104)流动情况下波纹状外形对流场涡流结构和总体气动特性的影响规律。计算结果表明:相对于光滑翼型,波纹状翼型流动的分离流现象更明显,升力和升力线斜率有明显下降,但推迟了失速现象。波纹状翼型表面越光顺,气动特性越接近于光滑翼型。虽然波纹状翼型的压差阻力大于光滑翼型,但是波纹状外形产生的回流可以减小摩擦阻力。   相似文献   

11.
合成射流控制NACA0015翼型大攻角流动分离   总被引:6,自引:0,他引:6  
为了研究合成射流激励器处于NACA0015翼型回流区时对其分离流动的控制,采用商用计算流体力学软件Fluent 6.1求解Reynolds平均Navier-Stokes方程,通过对翼型气动力特性、脱落漩涡结构以及射流孔口附近流动结构的分析,揭示了合成射流处于分离区时对边界层控制的机理.结果表明:当合成射流孔口处于回流区时仍可有效推迟翼面边界层分离点,缩小回流区范围,从而有效提高翼型的升力.当射流方向垂直于壁面,无量纲频率以及吹气速度比都等于1时,翼型平均升力系数提高40%左右.   相似文献   

12.
扰流片分离流动特性的数值研究   总被引:2,自引:0,他引:2  
在非结构网格下,采用SIMPLE算法结合两层带状边界层模型求解雷诺平均N-S方程.研究了底部间隙对平板扰流片引起的分离再附流动结构的影响.结果表明带底部间隙扰流片的流动结构主要由顶部绕流和底部间隙射流影响.底部间隙的大小决定了射流的强度,最终决定了绕流的结构.随着底部间隙的增大,绕流经历了封闭单涡回流区、射流干扰回流区以及平板绕流3种流动结构.它们之间的分界点分别是用扰流片宽无量纲间隙g/h=0.2,0.4.底部间隙0.2<g/h<0.4,底板压力分布基本保持不变,因此不会影响其应用于飞机部件的静态气动特性.   相似文献   

13.
旋转状态下叶片前缘复合换热实验   总被引:1,自引:0,他引:1  
通过液晶示温瞬态实验方法,对旋转状态下涡轮叶片前缘带气膜出流的冲击冷却结构的换热特性进行了研究,获得了哥氏力、离心力对复合换热效果的影响.实验参数:射流进口雷诺数Re=4 000,旋转数Ro=0~0.139.实验结果表明:随着旋转数的升高,实验模型的整体换热效果逐渐减弱,在旋转数为0.139时,与静止状态相比冲击面平均努塞尔数Nu下降了33%,压力面和吸力面分别下降了20.5%和7.5%;哥氏力的作用加速了射流的扩散,是造成旋转换热减弱的主要原因;哥氏力和离心力的共同影响使得吸力面的换热好于压力面;气膜孔的存在改变了流动结构,极大的增强了孔周边区域的换热效果.   相似文献   

14.
积冰对飞机飞行性能的影响   总被引:1,自引:0,他引:1  
针对飞机飞行过程中出现的积冰所带来的不利影响,提出一种求解积冰条件下飞行性能的思路.基于二维有限基本解法对翼型前缘的积冰形状进行预测;在计算飞行性能时,利用数值模拟的方法求解RNG(Renormalization Group) k-ε湍流模型下的雷诺平均N-S(Navier-Stokes)方程,对飞机全机流场进行解算,从而得出积冰状态下飞机的升力、阻力特性.最终结果表明:积冰严重影响着飞机的飞行性能,这与由相关实验得出的结论一致.该方法可应用于工程领域,对积冰条件下飞机的飞行性能进行快捷、有效地求解,为研究飞机防冰技术、提高飞行性能提供参考.   相似文献   

15.
 用三步显式格式时间推进求解物理空间曲线网格上有限体积离散的Euler方程,数值模拟一种战斗机外形的涡流场.计算的机翼表面压力分布与实验符合较好,用Euler方程捕获到机翼前缘分离涡(主涡)及翼面上的二次分离涡.Euler方程解中出现的二次涡可能是逆压梯度、尖锐边缘和人工粘性共同作用的结果,它的流谱与实验定性符合.  相似文献   

16.
采用有限体积方法,研究了矩形截面微通道直角突缩弯道局部流场及压力损失机理,重点考虑了雷诺数和弯道进出口截面面积比对局部流场及压力损失的影响,雷诺数范围为1~200,特征尺寸为500 μm.研究表明,低雷诺数时压力损失主要由壁面摩擦产生,弯道压力损失系数与具有相同中心线长度的直通道的压力损失系数变化趋势相同,但在数值上较小,突缩弯道会引起弯道内速度型发生变化,影响弯道压力损失;而高雷诺数时,压力损失主要由弯道内角位置的速度分离及漩涡产生,突缩弯道会抑制速度分离及漩涡产生,进而降低弯道压力损失.根据计算结果,拟合了弯道压力损失系数与雷诺数及进出口截面面积比的关系式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号