首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
高丽敏  刘哲  蔡明 《航空动力学报》2020,35(8):1695-1705
基于西北工业大学高亚声速平面叶栅风洞,测量了维氏收缩段的出口流场,发现其方向场品质较差,相比速度场和总压场,核心区沿周向减小了15%。对四种收缩段进行数值模拟后,对比了收缩段的出口核心区、均匀性及分离特性,发现维氏曲线在前部收缩,进口收缩过急引起旋涡,但出口稳流段较长,因此出口均匀性更好。双三次曲线在后部收缩,主流区顺压梯度更大,因此附面层更薄,气流偏角更小,分离特性更好,但出口过冲更大。现有维氏收缩段的三维结构在拓宽核心区同时对气流扰动较大,恶化速度场与方向场,气流偏角增加最大达43%。进口管径对双三次收缩段的流场特性影响不大。  相似文献   

2.
矩形风洞收缩段流场的计算和分析   总被引:7,自引:2,他引:7  
本文结合西工大低速风洞设计进行了矩形三元收缩段流场的计算和分析,计算采用差分方法和贴体坐标,以AF1格式进行离散化并利用ADI方法求解。对三种常用的收缩曲线(即Witozinsky曲线,五次方曲线和双三次方曲线)的三元流场进行了具体计算和比较。计算结果正确反映了三元收缩段流动的特点,给出了流动三元性对壁面逆压梯度和出口均匀性影响的数值结果,表明本文方法是三元收缩段设计的有效分析和设计手段。  相似文献   

3.
结冰风洞水滴直径标定方法研究   总被引:2,自引:0,他引:2  
过冷水滴粒径大小是重要的结冰云雾参数,获知结冰风洞中的水滴直径,是得到定量结冰风洞实验结果的基础。对于结冰风洞内水滴直径单一或者分布比较集中的情况,提出了一种采用数值计算和结冰风洞实验相结合的手段标定水滴直径的方法。该方法首先采用拉格朗日法数值计算水滴运动轨迹,得到撞击极限随水滴直径变化的关系曲线,在此基础上,进行结冰风洞实验,测量实验得到的水滴撞击极限,通过在撞击极限与水滴直径关系曲线上进行插值,进而得到实验水滴直径大小。采用该方法对0.3m×0.2m结冰风洞内的水滴直径进行了标定,分别计算和测量了25m/s和35m/s两种速度条件下的水滴撞击极限,得到的水滴直径值相差不超过1μm,初步说明该方法的合理性。同时,对于结冰风洞内水滴粒径多尺寸分布的情况,还提出了相应的标定其容积平均直径MVD的方法,该方法在计算水滴收集率的基础上,通过测量驻点处的结冰厚度,实现对MVD的测量。采用本文提出的两种方法进行结冰风洞水滴粒径标定,只需要一般的长度测量工具即可进行,操作方便,成本低廉,克服了常规的水滴直径测量或标定需要专门设备的不足。  相似文献   

4.
收缩段是风洞的重要组成部分,它的优劣影响着风洞实验段气流品质的好坏。在固定入口、出口、长度条件下,本文针对几种不同收缩曲线得到的收缩段模型。使用H—H型网格、采用ROE格式进行流场数值模拟,并将模拟得到的结果进行了对比分析。  相似文献   

5.
为研究YBF-04结冰风洞试验段内云雾均匀性和液态水含量分布情况,采用冰生长测量法,搭建结冰格栅和多圆柱试验件,在相同的来流条件和喷雾条件下开展结冰试验。其中,多圆柱试验装置可分别在旋转和静止两种状态下进行试验。格栅试验装置表面结冰情况,可直观反映试验段内云雾分布区域及均匀性情况;通过测量试验件表面结冰厚度,可计算试验段内局部液态水含量分布。试验结果表明,YBF-04结冰风洞内云雾分布范围主要集中在试验段截面75%区域内,但由于试验过程中喷雾水滴的沉降和喷嘴堵塞,云雾均匀性有待提高;格栅结冰后风洞阻塞比增加,风洞试验段内参数发生明显变化,而多圆柱在试验过程中对风洞流场参数影响较小,液态水含量测量准确度相对更高。  相似文献   

6.
风洞收缩段曲线气动性能研究   总被引:2,自引:0,他引:2  
介绍了一种新的风洞收缩段曲线的设计方法,即UG参数化收缩段壁型曲线设计。采用商用软件fluent对这种收缩段曲线性能进行数值模拟计算,获得了好的流场品质,对于风洞的设计以及流动优化提供了新的设计思想。在模拟计算的基础上应用了该研究成果加工制造了一座低速风洞,并对风洞流场进行了校测,对比了模拟计算结果与实验测量结果,并进行了流场性能分析。该设计方法可以应用推广到风洞设计工作中去。  相似文献   

7.
三维收缩段设计问题   总被引:2,自引:0,他引:2  
结合西北工业大学低速风洞的设计研究了矩形截面三维收缩段设计问题。用差分方法和贴体坐标对收缩段的不可压势流场进行了数值计算。选择三种常用的收缩曲线进行比较设计,对设计准则进行了校核,并给出收缩殴流动特性。通过优化的双三次曲线优于其他曲线。最后对三维收缩段设计问题提出一些看法。  相似文献   

8.
结冰风洞中液滴过冷特性数值研究   总被引:1,自引:1,他引:1  
为明晰结冰风洞中液滴过冷特性,发展了基于欧拉法的气液两相耦合流动计算方法,模拟了结冰风洞中气液两相耦合流动过程。在此基础上,首先开展了参数影响研究,然后考察了典型结冰风洞构型中三维收缩效应对液滴过冷特性的影响,最后评估了该风洞试验段内液滴过冷状态。结果表明:结冰风洞中液滴过冷特性主要受液滴粒径和气流速度影响,增大液滴粒径和气流速度会显著增加两相温度平衡距离;结冰风洞中的液滴传热过程可以分为准一维传热和三维收缩传热两个阶段,三维收缩传热阶段对液滴过冷状态的影响显著强于准一维传热阶段,三维收缩效应对液滴过冷状态起决定性作用;在典型试验工况下,粒径小于40μm的小粒径液滴在试验段内均达到过冷状态(液滴气流温度差小于2℃),但粒径大于100μm的大粒径液滴在高风速条件下(试验段气流速度为157m/s)未达到过冷状态(液滴气流温度差大于5℃)。  相似文献   

9.
风洞高次曲线收缩段壁型及其性能   总被引:3,自引:0,他引:3  
介绍的五次曲线收缩段壁型是一种新型风洞壁型,与通常采用的壁型相比,具有边界层厚度薄,流场湍流度低,气流均匀性好等综合效果,该收缩段壁型有推广价值。  相似文献   

10.
采用商用软件FLUENT对双三次曲线和维辛斯基曲线这两种收缩段曲线进行了数值模拟,旨在通过仿真结果为低速风洞收缩段的设计选择一种较为合适的曲线。从流函数、静压、速度图中可以看见,收缩段曲线采用双三次曲线时各截面参数均匀,可以达到很好的收敛效果,通过本次数值模拟计算可为低速直流风洞的设计及优化提供了重要的依据。  相似文献   

11.
超音速喷管由收缩和扩张两段组成,是高速风洞中获得超音速流动的重要部件。对于超音速喷管收缩段设计方法的研究较多,但尚未见到喷管收缩段的几种设计型面曲线如何与扩张段合理匹配问题的研究。针对以上的问题,利用CFD数值模拟方法对几种收缩曲线与扩张段匹配问题进行了计算。通过对计算结果进行对比分析,发现不同收缩曲线对超音速喷管内流有一定的影响,分析了流场特征,展示了马赫数在喷管内部的分布。  相似文献   

12.
采用数值模拟方法研究沈阳航空航天大学高速叶栅风洞试验段流场,由于试验段上下壁板间的垂直高度是随着叶栅攻角的改变而变化的,这就造成了过渡段上下壁收缩曲线的不对称,这其中的气流流场是不均匀的,通过对CFD数值模拟计算结果的比较和分析,最终选择合适的过渡区上下壁面收缩曲线,使得叶栅试验段处得到均匀稳定的流场,达到预期的效果,使得由上下壁面型面曲线不对称而引起的气流不均匀问题得到很大改善。  相似文献   

13.
一种乘波前体进气道的一体化设计及性能分析   总被引:5,自引:2,他引:3  
采用特征线方法设计了具有直线初始激波、内收缩段消除激波反射、出口参数均匀可控的基准内锥流场.基于密切内锥(osculating inward turning cone,OIC)乘波体设计方法,发展了一体化密切内锥乘波前体进气道(osculating inward turning cone waverider inlet,OICWI)设计技术.基于一体化基准内锥流场和前体进气道设计技术,设计了密切内锥乘波前体进气道.采用数值软件对设计的乘波前体进气道进行了仿真分析,结论如下:①OICWI的设计是遵循气动原理的.②一体化密切内锥乘波前体进气道的前缘形状、内收缩比及出口参数可以根据需求定量准确设计.③理论设计结果和模拟结果吻合一致,证明设计方法是正确可靠的.④数值模拟研究结果表明一体化密切内锥乘波前体进气道具有较好的出口流场均匀度及较高的流量捕获率和较高的总压恢复特性.   相似文献   

14.
吸附式压气机转子叶片气动优化设计   总被引:1,自引:1,他引:0  
进行吸附式压气机转子叶片气动设计方法研究.提出通过迭代设计,应用三维流场计算结果提供S2流面通流计算损失模型,提高了S2流面流场计算精度;将最优化方法与数值模拟技术相结合,建立吸气与型面耦合的回转面二维叶型优化设计和三维叶片优化设计软件;应用所构建的设计软件,进行吸附式压气机转子设计,数值模拟结果表明:该转子在0.86的叶尖载荷下,设计点总压比为1.631、等熵效率为0.965,实现了高气动性能.   相似文献   

15.
《中国航空学报》2021,34(4):476-492
In this study, the low emission combustion technology of Rich-Quench-Lean (RQL) has been applied in Trapped-Vortex Combustor (TVC), and the combinative RQL-TVC shows a promising low emissions performance. By utilizing a quench orifice plate combined with a bluff-body, a lab-scale RQL-TVC was designed. The flow fields of RQL-TVC were measured by 2-D PIV and predicted by 3-D numerical simulation. Flow structures, radial profiles of normalized mean axial velocity, turbulence intensity and mixing level of the quench zone were analyzed. Results reveal that the dual-vortex and the single-vortex flow patterns both exist in cavities and quench zone of RQL-TVC, and the turbulence intensity is strong in the quench zone with some reverse flows. The spiral vortex was discussed by 3-D streamlines and the detail flow structures of the quench zone were analyzed based on the numerical results. The mixing level of the quench zone was determined, and results show that the quench device enhances the mixing level compared with TVC. Combustion efficiency and emissions performance were investigated experimentally, and results demonstrate that RQL-TVC has relatively higher combustion efficiency and lower emission index of CO, UHC and NOx than the same size lab-scale TVC in present work.  相似文献   

16.
《中国航空学报》2020,33(12):3460-3468
The YSZ coatings are prepared by the plasma spray-physical vapor deposition (PS-PVD) technology based on a specific experimental design. The structure, thickness and growth angle of YSZ coatings on the entire circumferential surface of the cylindrical sample are studied. The results indicated that the structure, thickness and deflection growth angle of YSZ coatings are related to the orientation of deposition location. The numerical simulation of the multiphase mixed fluid near the substrate is carried out and the deposition regularity and mechanism of YSZ coatings prepared by PS-PVD is deduced. The growth rate is related to the local characteristics of the plasma flow field, and is directly proportional to the field pressure and inversely proportional to the field velocity. The growth angle of the coating is generally affected by the flow direction of the plasma jet. Especially, the normal component of velocity vector, Vnorm, mainly affects the speed at which the coating grows vertically upwards. The tangential component of velocity vector, Vtan, determines the degree that the coating growth direction deviates from the vertical direction. When Vtan ≠ 0, the coating forms a fine column with a certain deflection angle and finally develops into an oblique columnar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号