首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The discrepancy between cosmic ray model predictions representing solar minimum conditions in the heliosphere and the 3–10 MeV post-1998 electrons observations by the Kiel Electron Telescope (KET) onboard Ulysses suggests the need for consistent changes in model parameters with increasing solar activity. In order to reduce this discrepancy, an effort is made to model the KET observations realistically during periods of increased solar activity by applying an advanced three-dimensional, steady-state electron modulation model based on Parker’s transport equation including the Jovian electron source. Some elements of the diffusion tensor which were not previously emphasized are revisited. A new relation is also established between the latitudinal dependence of the solar wind speed and the perpendicular polar diffusion. Based on this relation, a transition of an average solar wind speed from solar minimum to solar maximum conditions, as observed on board the Ulysses spacecraft, is modeled on the concept of the time-evolution of large polar coronal holes. These changes are correlated to different scenarios of the enhancement of perpendicular polar diffusion. Effects of these scenarios are illustrated, as a series of steady-state solutions, on the computed 7 MeV Jovian and galactic electrons in comparison with 3–10 MeV electrons observed from the period 1998 to the end of 2003. It is shown that this approach improves compatibility with the KET observations but it also points to the need for a time-dependent electron modulation model to fully describe modulation during moderate to extreme solar maximum conditions.  相似文献   

2.
There are hundreds of satellites operating at the geosynchronous (GEO) orbit where relativistic electrons can cause severe damage. Thus, predicting relativistic electron fluxes is significant for spacecraft safety. In this study, using GOES satellite data during 2011–2020, we propose two neural network models with two hidden layers to predict geosynchronous relativistic electron fluxes at two energy channels (>0.8 MeV and > 2 MeV). The number of input neurons of the two channels (>0.8 MeV and > 2 MeV) are determined to be 36 and 44, respectively. The > 0.8 MeV model has 22 and 9 neurons in the hidden layers, while the > 2 MeV model has 25 and 15 neurons in the hidden layers. The input parameters include the north–south component of the interplanetary magnetic field, solar wind speed, solar wind dynamic pressure and solar wind proton density. Through the analysis of different time delays, we determine that the optimal time delays of two energy channels (>0.8 MeV and > 2 MeV) are 8 days and 10 days, respectively. The training set and validation set (Jan 2011-Dec 2018) are divided by the 10-fold cross-validation method, and the remaining data (Jan 2019-Feb 2020) is used to analyze the model performance as a test set. The prediction results of both energy channels show good agreement with satellite observations indicated by low RMSE (~0.3 cm-2sr-1s?1), high PE (~0.8) and CC (~0.9). These results suggest that only using solar wind parameters is capable of obtaining reasonable predictions of geosynchronous relativistic electron fluxes.  相似文献   

3.
An empirical formula relating the strength of a storm given by its |Dst|max with the L-coordinate of the peak of storm-injected relativistic electrons is one of a few well-confirmed quantitative relations found in the magneto-spheric physics. We successively extended a dataset of the formula’s basic storms with several events of high Dst-amplitude up to the highest observed |Dst|max = 600 nT. Possible applying of the formula to the predicting of the ring-current plasma-pressure distribution and the lowest westward electrojet position for a storm are discussed. We have also analyzed the 2000–2001 years’ data on relativistic electrons from our instruments installed on EXPRESS-A (geosynchronous orbit; Ee = 0.8–6 MeV), Molniya-3 (h = 500 × 40 000 km, i = 63°; Ee = 0.8–5.5 MeV) and GLONASS (h = 20 000 km, i = 64°; Ee  l MeV) along with other correlated measurements: GOES series (Ee > 2 MeV), geomagnetic indices (Dst, AE, AL) and interplanetary parameters (solar wind, IMF). The goal is to investigate which outer conditions are most responsible for the high/low output of the storm-injected relativistic electrons. For the geosynchronous orbit, two factors are found as the necessary condition of the highest electron output: high and long-lasting substorm activity on a storm recovery phase and high velocity of solar wind. On the contrary, extremely low substorm activity surely observed during whole the storm recovery phase constitutes a sufficient condition of the non-increased after-storm electron intensity. For the first time found cases of the increased after-storm electron intensity observed at the inner L-shells with no simultaneously seen increase in the geosynchronous distances are presented.  相似文献   

4.
It is well known that during many but not all of the geomagnetic storms enhanced fluxes of high-energy electrons are observed in the outer radiation belt. Here we examine relativistic (>2 MeV) electron fluxes measured by GOES at the synchronous orbit and on-ground observations of two types of ULF pulsations during 30 magnetic storms occurred during 1996–2000. To characterize the effectiveness of the chosen magnetic storms in producing relativistic electron fluxes, following to (Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.R. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, doi:10.1029/2002GL016513, 2003), we calculate a ratio of the maximum daily-averaged electron flux measured during the recovery phase, to the mean pre-storm electron flux. A storm is considered an effective one if its ratio exceeds 2. We compare behavior of Pi1 and Pc5 geomagnetic pulsations during effective and non-effective storms and find a tendency for a storm efficiency to be higher when the mid-latitude Pi1 pulsations are observed for a long time during the magnetic storm main phase. We note also that the prolonged powerful Pc5 pulsation activity during the recovery phase of a magnetic storm is the necessary condition for the storm effectiveness. To interpret the found dependences, we suggest that there are two prerequisites for generating relativistic electron populations during a storm: (1) the availability of seed electrons in the magnetosphere, and Pi1 emissions are indicators of the mid-energy electron interaction with the ionosphere and (2) acceleration of the seed electrons to MeV energies, and interaction of electrons with the MHD wave activity in the Pc5 range is one of the most probable mechanisms proposed in the literature for this purpose.  相似文献   

5.
Using the Dst and AE geomagnetic index values and parameters of interplanetary magnetic field and solar wind we have examined the geoeffectiveness of transient ejections in the solar wind, namely, magnetic clouds and high-speed streams. It is found that for magnetic clouds the dependences of indices on the solar wind electric field are nonlinear of different kind. In contrast to magnetic clouds, the dependence of Dst and AE geomagnetic index values on the solar wind electric field agrees closely with the linear one for high-speed streams. We suggest approximating formulas to describe dependences obtained taking into account the relation of the electric field transpolar potential to the electric field and dynamic pressure of the solar wind. We suppose that the interplanetary magnetic field fluctuations also contribute to these dependences.  相似文献   

6.
分析了地球同步轨道高能电子通量增强事件的发生规律及其与太阳风和行星际磁场参数的关系,并在此基础上建立了基于人工神经网络的高能电子增强事件模式,经实测数据检验,预报模式可以对未来1天的高能电子通量进行预报,误差为8.2%,达到了较高水平.  相似文献   

7.
低轨道高度上能量电子通量变化与地磁扰动程度密切相关.利用我国资源2号(ZY-2)03星空间环境监测分系统在轨工作期间所获得的能量电子探测数据,以及美国NOAA-15,NOAA-16,NOAA-17三颗卫星中等能量电子探测器自1998年以来积累的太阳同步轨道中等能量电子探测数据,结合地磁活动观测数据,对低轨道高度上中等能量电子对地磁扰动的响应特性进行了统计分析.结果表明,该区域的中等能量电子通量在磁暴、磁层亚暴期间有显著增强,增幅大小与地磁活动程度呈正相关关系,强磁暴期间增幅可达一个数量级左右,在响应时间上存在电子通量变化滞后于磁扰的时间特性.   相似文献   

8.
采用中国中地球轨道卫星在太阳活动下降相到上升相的高能电子探测数据, 首次分析研究了该轨道高能电子环境的空间分布、通量强度、时序变化以及对地磁暴活动响应的特性. 结果表明, 中地球轨道高能电子的空间分布 范围稳定, 电子通量强度随能量升高而下降; 中地球轨道高能电子环境是 一个在不同时间尺度上剧烈变化的动态系统, 该系统可能间歇性地出现27天重 现性变化, 该系统变化受地磁暴事件调制, 但其对磁暴的响应呈现出非线性特征.   相似文献   

9.
地球同步轨道区域充满能量高达MeV的高能电子,其对航天器威胁极大.电子微分通量预报有助于及时有效地预警高能电子事件,降低高能电子对航天器造成的危害.本文以此为背景提出了一种基于经验正交函数(EOF)方法的地球同步轨道相对论电子微分通量预报模型.该模型利用太阳风参数及地磁指数拟合后一天的电子通量EOF系数,结合EOF基函数给出后一天中大于2MeV电子微分通量预报.对2003年1月至2006年6月的样本测试结果表明,该模型可以重构出电子微分通量的真实变化,给出较好的5min微分通量预报,其平均预报效率达到67%左右.   相似文献   

10.
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models.  相似文献   

11.
Waves in the Ultra Low Frequency (ULF) band owe their existence to solar wind turbulence and transport momentum and energy from the solar wind to the magnetosphere and farther down. Therefore an index based on ULF wave power could better characterize solar wind–magnetosphere interaction than KP, Dst, AE, etc. indices which described mainly quasi-study state condition of the system. We have shown that the ULF wave index accurately characterize relativistic electron dynamics in the magnetosphere as these waves are closely associated with circulation, diffusion and energization of relativistic electrons in the magnetosphere. High speed solar wind streams also act as a significant driver of activity in the Earth’s magnetosphere co-rotating interaction region and are responsible for geomagnetic activities. In the present paper, we have analyzed various cases related with very weak (quiet) days, weak days, storm days and eclipse events and discussed the utility of the ULF wave index to explain the magnetospheric dynamics and associated properties. We have tried to explain that the ULF wave index can equally be useful as a space weather parameter like the other indices.  相似文献   

12.
统计分析了GOES卫星测量得到的E > 2MeV能道电子通量与地磁Ap指数及太阳风数据的关系, 构建了基于径向基函数RBF的神经网络模型框架, 对GOES-12卫星所处的地球同步轨道高能电子通量进行提前1天的预报, 其对2008-2010年数据预测的效果较好. 另外, 发现在GOES-12卫星观测的E >2MeV能道高能电子达到108 cm-2·d-1·sr-1以上时, FY-2D卫星的测量数据同时达到108 cm-2·d-1·sr-1以上的比例达到90%左右. 通过对FY-2D卫星E >2MeV能道电子通量与GOES卫星E>2MeV电子通量的相关性分析, 建立了FY-2D卫星高能电子预报模型, 预报结果与实测通量符合较好.   相似文献   

13.
14.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   

15.
The detailed study of the precipitation of magnetospheric particles into the atmosphere is complicated by the rather complex spatial configuration of the precipitation region and its variability with geomagnetic activity. In this paper we will introduce polar oval coordinates and apply them to POES observations of 30 keV to 2.5 MeV electrons and comparable protons to illustrate the dependence of particle precipitation on local time and geomagnetic activity. These coordinates also allow an easy separation of the spatial precipitation patterns of solar and magnetospheric particles. The results indicate that (a) the spatial precipitation pattern of energetic magnetospheric electrons basically follows the pattern of the field parallel Birkeland currents up to MeV energies and (b) at least in the mesosphere the influence of magnetospheric electrons is comparable to the one of solar electrons. Implications for modeling of atmospheric chemistry will be sketched.  相似文献   

16.
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage.  相似文献   

17.
The paper presents results of our study of dependence of geomagnetic activity from geoeffective parameters taking into account mutual orientation of the interplanetary magnetic field, electric field of the solar wind and geomagnetic moment. We attract a reconnection model elaborated by us made allowance for changes of geometry of the solar wind–magnetosphere interaction during annual and diurnal motions of the Earth. We take as our data base the interplanetary magnetic field and solar wind velocity measured at 1 a.u. at ecliptic plane for the period of 1963–2005 and Kp, Dst, am indices. Taken as a whole a geoeffective parameter suggested by us explains 95% of observed variations of the indices. Changes of the geometric factor determined by mutual orientation of the solar wind electric field and geomagnetic moment explain larger than 75% of observed statistical variations of Dst and am indices. Based on our results we suggest a new explanation of semi-annual and UT variation of geomagnetic activity.  相似文献   

18.
强磁暴、能量粒子暴与热层大气密度涨落之间的相关关系   总被引:2,自引:0,他引:2  
利用1997-2007年由GOES8, GOES11和GOES12星载高能粒子探测器在地球同步轨道高度上所探测到的高能质子和高能电子通量探测数据以及高度560km左右星载大气密度探测器所得的热层大气密度探测数据, 统计分析了强地磁扰动、高能粒子通量跃变和热层大气密度涨落之间的相关关系, 初步获得强地磁扰动期间, 地球同步轨道(外辐射带外环)均出现了增幅大于三个数量级的高能质子通量(尤其是E>1MeV)强增强现象, 随后热 层大气密度强烈上涨, 表明三者之间是正相关关系. 在时间上地球同步轨道高能质子通量强增强现象先于日均Ap值(地磁活动程度)上涨约一天左右, 而热层大气密度强涨落现象又明显滞后于强地磁扰动事件.   相似文献   

19.
利用光化平衡模式计算了低纬100—200km间白天电子数密度的变化。求得E-F1谷区的谷深,谷宽、谷高的变化特征。获得如下结果:a.太阳活动明显影响电子数密度随高度及太阳天顶角的变化,发现太阳活动指数与电子数密度间不仅存在正相关,而且存在负相关;b.太阳活动明显影响E-F1谷区的形态。在一定太阳活动条件下,对同一太阳赤纬和地理纬度,谷深、谷宽与太阳天顶角的关系难以用一简单函数来表示;c.太阳耀斑、地磁活动对该区电子密度有明显影响;d.在讨论100—200km间电子密度时不能忽略O+(2P)和NO的光电离率。   相似文献   

20.
地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,Dst和AE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号