首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Adaptive beamforming is used to enhance the detection of target echoes received by high frequency (HF) surface wave (HFSW) over-the-horizon (OTH) radars in the presence of spatially structured interference. External interference from natural and man-made sources typically masks the entire range-Doppler search space and is characterized by a spatial covariance matrix that is time-varying or nonstationary over the coherent processing interval (CPI). Adaptive beamformers that update the spatial filtering weight vector within the CPI are likely to suppress such interference most effectively, but the intra-CPI antenna pattern fluctuations result in temporal decorrelation of the clutter which severely degrades subclutter visibility after Doppler processing. A robust adaptive beamformer that effectively suppresses spatially nonstationary interference without degrading subclutter visibility is proposed here. The proposed algorithm is computationally efficient and suitable for practical implementation. Its operational performance is evaluated using experimental data recorded by the Iluka HFSW OTH radar, located near Darwin in far north Australia.  相似文献   

2.
Modeling and performance of HF/OTH radar target classificationsystems   总被引:1,自引:0,他引:1  
The effects of a class of multipath propagation channels on the performance of a over-the-horizon (OTH) radar target classification system are considered. A Rician frequency-selective fading channel model is employed to characterize the effects of the multipath propagation medium and evaluate the performance of radar target classification systems. The performance of classification algorithms that employ relative amplitude, relative phase, and absolute amplitude measurements as features is investigated. Performance estimates of the various classification algorithms for interesting sets of channel parameters are obtained by means of Monte-Carlo simulations  相似文献   

3.
ONERA, funded by the French Ministry of Defence has conducted the realization and experimentations of the Doppler Skywave OTH radar called NOSTRADAMUS. One of the main characteristics of Skywave OTH radar is the dependence to the ionosphere for successful operation. The use of the HF band allows Skywave OTH radar to bounce radio waves from the ionosphere, receiving tiny signals back from reflecting surfaces as the sea, islands, ships and aircraft. The knowledge of the behavior of the ionosphere in a real time configuration is of primary importance because it influences on the choice of frequencies. Radars systems require developing a real-time frequency management system (FMS) using prediction program or measurements supplied by vertical or oblique sounders. The French OTH radar concept has been developed and implemented so that the radar could be completely autonomous with respect to others "ionospheric information providers." This paper presents the NOSTRADAMUS system, the frequency management system, and shows some results obtained during the past years  相似文献   

4.
Signal or target detection is sometimes complicated by the presence of strong interference. When this interference occurs mainly in the sidelobes of the antenna pattern, a solution to this problem is realized through a sidelobe canceler (SLC) implementation. Since the false-alarm probability is a system parameter of special importance in radar, an interference-canceling technique for radar application should maintain the false-alarm probability constant over a wide range of incident interference power. With the requirements of sidelobe interference cancellation and constant false alarm rate (CFAR), a new algorithm for radar detection in the presence of sidelobe interference is developed from the generalized likelihood ratio test of Neyman-Pearson. In this development, the received interference is modeled as a nonstationary but slowly varying Gaussian random process. Cancellation of the sidelobe interference is based upon a `synchronous' estimate of the spatial covariance of the interference for the range gate being tested. This algorithm provides a fixed false-alarm rate and a fixed threshold which depend only upon the parameters of the algorithm  相似文献   

5.
In the work presented here, we address parameter optimization for agile beam radar tracking to minimize the radar resources that are required to maintain a target under track. The parameters to be optimized include the track-revisit interval as well as the sequence of pairs of target signal strengths and detection thresholds associated with successive illumination attempts in each track-revisit. The effects of false alarms and clutter interference are taken into account in the modeling of target detection and in the characterization of tracking performance. Based on the detection model and tracker characterization, the parameter optimization problem is formulated. Typical examples of the optimization problem are numerically solved. The optimal solution gives an off-line scheduling of the parameter set. It also provides insight into the selection of a near-optimal parameter set that is appropriate for real-time implementation.  相似文献   

6.
Most of the current forward-looking ground-penetrating radar (FLGPR) systems use conventional delay-and-sum (DAS) based methods to form radar images for detection of the target (such as a landmine). However, DAS is a data-independent approach which is known to suffer from low resolution and poor interference and clutter rejection capability. We present a data-adaptive imaging approach for FLGPR image formation based on APES (amplitude and phase estimation) and rank-deficient RCB (robust Capon beamforming). Due to the data-adaptive nature of both APES and RCB, our approach has better resolution and much better interference and clutter rejection capability than the standard DAS-based imaging methods. The excellent performance of the proposed method is demonstrated using experimental data collected via two FLGPR systems recently developed by PSI (Planning Systems, Inc.) and SRI (Stanford Research Institute).  相似文献   

7.
3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions   总被引:2,自引:0,他引:2  
The results of three-dimensional (3-D) imaging of a T-72 tank using its angular azimuthal (turntable) and linear elevation synthetic aperture data at X band are presented. This is achieved using an accurate and computationally efficient wavefront (Fourier-based) reconstruction algorithm for elevation and circular (E-CSAR) data. The E-CSAR 3-D images are then used to synthesize 2-D spotlight and stripmap slant plane synthetic aperture radar (SAR) images of the target at a desired range and squint angle. For this purpose, a procedure is introduced that incorporates the spatially varying azimuthal and elevation Doppler signatures of individual reflectors on the target as well as the mean range, azimuth, and elevation of the flight path. Results using the E-CSAR images of the T-72 tank are provided.  相似文献   

8.
Analysis of CFAR performance in Weibull clutter   总被引:2,自引:0,他引:2  
Recent interest has focused on order statistic-based (OS-based) algorithms for calculating radar detection thresholds. Previous analyses of these algorithms are extended, to determine closed-form approximations for the signal-to-clutter ratio required to achieve a particular probability of detection in clutter environments whose amplitude statistics are modeled by the Weibull distribution, and where the clutter dominates receiver noise. Performance is evaluated in both homogeneous and inhomogenous clutter. The analysis shows that the OS-based algorithm is quite robust against both interference and clutter edges. A method is suggested for improving performance at clutter inhomogeneities for short-range targets  相似文献   

9.
This paper proposes a novel statistical prediction of monopulse errors (Levanon, 1988) for a radar Swerling III-IV target embedded in noise or noise jamming where multiple observations are available. First, the study of the maximum likelihood estimator (MLE) of the complex monopulse ratio for a Swerling III-IV target embedded in spatially white noise allows us to extend the use of the MLE practical approximate form introduced by Mosca (1969) for Swerling 0-I-II cases. Afterward, we derive analytical formulas for both the mean and variance of the MLE in approximate form conditioned by the usual detection step performed on the sum channel of a monopulse antenna. Last, we provide a comparison of target direction of arrival (DOA) estimation performance based on monopulse ratio estimation as a function of the Swerling model in the context of a multifunction radar.  相似文献   

10.
王国宏  孙殿星  白杰  张翔宇 《航空学报》2018,39(3):321500-321500
针对强射频(RF)噪声干扰下脉压雷达目标检测概率较低的问题,提出了一种基于预估-反馈联合处理的射频噪声干扰抑制算法。首先,对回波信号进行盲源分离预处理,并利用分数阶傅里叶变换(FRFT)的特性对目标回波信号进行参数估计以及窄带滤波处理,滤除大部分干扰和噪声的能量;然后,在数据层运用M/N逻辑法进行点迹处理,并结合径向速度方向判决,实现对目标航迹的预估检测;最后,利用数据层对航迹状态的反馈实时修正滤波器参数,从而在信号层更好地滤除干扰能量,并对中断航迹进行剔除,完成射频噪声干扰的抑制。仿真结果表明:与现有射频噪声干扰抑制技术相比,所提算法具有更优的干扰抑制效果。  相似文献   

11.
In radar systems, sidelobe blanking (SLB) is used to mitigate impulsive interference that enters the radar through sidelobes of the main antenna. SLB employs an auxiliary antenna channel with the output being compared with that of the main antenna channel and a decision is then made as to whether or not to blank the main channel output. SLB performance determination involves the evaluation of several probability functions. Based on the classical Maisel SLB architecture, this work extends previous performance results, in which detection was limited to the case of a single radar pulse with either Marcum or Swerling I target fluctuation. Probability expressions have been generalized to include both an arbitrary number of integrated pulses and target fluctuation models based on the gamma distribution. The Swerling fluctuation models are all special cases of the gamma distribution. Results are derived in terms of two generalized probability functions, one for detection and the other for blanking. With these generalized probability functions, the SLB design and performance results can be determined. Examples are presented and discussed.  相似文献   

12.
In the article, the radar acquisition problem, e.g. the determination of a directional energy allocation sequence, is studied. The radar search pattern goal is the detection of a moving target whose initial location is approximately known. We have turned towards the general search theory where the observer allocates indivisible search efforts while the target presence probability spreads due to its dynamics. A few years ago, a Branch and Bound algorithm was proposed to determine the optimal sequence for a conditionally deterministic target. This operational research algorithm supposes a negative exponential detection function and a one over N detection logic, meaning that the target is declared detected if it has been detected once over a horizon of N looks. We have applied it to a narrow-beam tracking radar attempting to acquire a ballistic target. Non-trivial search patterns, such as expanding-contracting spirals, are obtained.  相似文献   

13.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

14.
Radio interference generated in a helicopter-borne continuous wave (CW) Doppler radar system due to the rotating blades is analyzed. This problem has been previously treated for the case of pulse Doppler radar systems with very narrow (near zero) beamwidth. In this case the strong interference component returning directly from the blades (with no ground reflection) need not be considered as it reaches the receiver when it is still blinded. In the case of a CW Doppler radar, however, this interference component must be included. Numerical calculations show that the total blade interference power level, dominated by the direct component, is higher than that of the direct ground clutter in the radar clutter region. It decreases approximately as (f - fo)-4 in the radar clear region. It stays, however, well above the thermal noise level which might cause false alarm and degrade the radar performance.  相似文献   

15.
A Multiband GLRT-LQ (Generalized Likelihood Ratio Test-Linear Quadratic), MBGLRT-LQ, detector is derived for the coherent radar target detection against a compound-Gaussian clutter background. This scheme is an extension to the multiband case of the Asymptotically Optimum Detector (AOD), also derived under the name of GLRT-LQ in. The proposed multiband version of the algorithm shows two main advantages with respect to the original single-band algorithm. 1) For the adaptive implementation, it requires a much smaller area of homogeneous clutter echoes to estimate the covariance matrix of the interference; 2) it provides an optimum processing of the radar echoes when the radar operates in frequency agility, as electronic counter-countermeasure (ECCM) strategy. A closed form performance analysis is provided for the MBGLRT-LQ detector, which is used to compare it with the single-band version. An application to live recorded data is also presented to validate the obtained results  相似文献   

16.
In previous work, a matched-field estimate of aircraft altitude from multiple over-the-horizon (OTH) radar dwells was presented. This approach exploits the altitude dependence of direct and surface reflected returns off the aircraft and the relative phase changes of these micro-multipath arrivals across radar dwells. Since this previous approach assumed high dwell-to-dwell predictability, it has been found to be sensitive to mismatch between modeled versus observed micro-multipath phase and amplitude changes from dwell-to-dwell. A generalized matched-field altitude estimate is presented here based on a state-space model that accounts for random ionospheric and target-motion effects that degrade the dwell-to-dwell predictability of target returns. The new formulation results in an efficient, robust recursive maximum likelihood (ML) estimation of aircraft altitude. Simulations suggest that the proposed technique can achieve accuracy within 5,000 ft of the true aircraft altitude, even with relatively high levels of uncertainty in modeling of dwell-to-dwell changes in the target return. A real data result is also presented to illustrate the technique.  相似文献   

17.
IMMPDAF for radar management and tracking benchmark with ECM   总被引:2,自引:0,他引:2  
A framework is presented for controlling a phased array radar for tracking highly maneuvering targets in the presence of false alarms (FAs) and electronic countermeasures (ECMs). Algorithms are presented for track formation and maintenance; adaptive selection of target revisit interval, waveform and detection threshold; and neutralizing techniques for ECM, namely, against a standoff jammer (SOJ) and range gate pull off (RGPO). The interacting multiple model (IMM) estimator in combination with the probabilistic data association (PDA) technique is used for tracking. A constant false alarm rate (CFAR) approach is used to adaptively select the detection threshold and radar waveform, countering the effect of jammer-induced false measurements. The revisit interval is selected adaptively, based on the predicted angular innovation standard deviations. This tracker/radar-resource-allocator provides a complete solution to the benchmark problem for target tracking and radar control. Simulation results show an average sampling interval of about 2.5 s while maintaining a track loss less than the maximum allowed 4%  相似文献   

18.
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.  相似文献   

19.
Update with out-of-sequence measurements in tracking: exact solution   总被引:6,自引:0,他引:6  
In target tracking systems measurements are typically collected in "scans" or "frames" and then they are transmitted to a processing center. In multisensor tracking systems that operate in a centralized manner, there are usually different time delays in transmitting the scans or frames from the various sensors to the center. This can lead to situations where measurements from the same target arrive out of sequence. Such "out-of-sequence" measurement (OOSM) arrivals can occur even in the absence of scan/frame communication time delays. The resulting "negative-time measurement update" problem, which is quite common in real multisensor systems, was solved previously only approximately in the literature. The exact state update equation for such a problem is presented. The optimal and two suboptimal algorithms are compared on a number of realistic examples, including a GMTI (ground moving target indicator) radar case.  相似文献   

20.
A novel target detection approach based on adaptive radar waveform design   总被引:2,自引:2,他引:0  
To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号