首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

2.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   

3.
SWEA, the solar wind electron analyzers that are part of the IMPACT in situ investigation for the STEREO mission, are described. They are identical on each of the two spacecraft. Both are designed to provide detailed measurements of interplanetary electron distribution functions in the energy range 1~3000 eV and in a 120°×360° solid angle sector. This energy range covers the core or thermal solar wind plasma electrons, and the suprathermal halo electrons including the field-aligned heat flux or strahl used to diagnose the interplanetary magnetic field topology. The potential of each analyzer will be varied in order to maintain their energy resolution for spacecraft potentials comparable to the solar wind thermal electron energies. Calibrations have been performed that show the performance of the devices are in good agreement with calculations and will allow precise diagnostics of all of the interplanetary electron populations at the two STEREO spacecraft locations.  相似文献   

4.
The THEMIS ESA Plasma Instrument and In-flight Calibration   总被引:3,自引:0,他引:3  
The THEMIS plasma instrument is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 keV for ions. The instrument consists of a pair of “top hat” electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period. Particles are detected by microchannel plate detectors and binned into six distributions whose energy, angle, and time resolution depend upon instrument mode. On-board moments are calculated, and processing includes corrections for spacecraft potential. This paper focuses on the ground and in-flight calibrations of the 10 sensors on five spacecraft. Cross-calibrations were facilitated by having all the plasma measurements available with the same resolution and format, along with spacecraft potential and magnetic field measurements in the same data set. Lessons learned from this effort should be useful for future multi-satellite missions.  相似文献   

5.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

6.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   

7.
Harvey  P.R.  Curtis  D.W.  Heetderks  H.D.  Pankow  D.  Rauch-Leiba  J.M.  Wittenbrock  S.K.  McFadden  J.P. 《Space Science Reviews》2001,98(1-2):113-149
The Fast Auroral Snapshot Explorer (FAST) is the second of the Small Explorer Missions which are designed to provide low cost space flight opportunities to the scientific community. FAST performs high time resolution measurements of the auroral zone in order to resolve the microphysics of the auroral acceleration region. Its primary science objectives necessitate high data volume, real-time command capability, and control of science data collection on suborbital time scales. The large number of instruments requires a sophisticated Instrument Data Processing Unit (IDPU) to organize the data into the 1 Gbit solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high data rate snapshots (12 Mbit s–1) and coarser survey data collection (0.5 Mbit s–1) to place the high rate data in context. In order to optimize the science, onboard triggering algorithms select the snapshots based upon data quality. This paper presents a detailed discussion of the hardware and software design of the FAST IDPU, describing the innovative design that has been essential to the FAST mission's success.  相似文献   

8.
Barraclough  B.L.  Dors  E.E.  Abeyta  R.A.  Alexander  J.F.  Ameduri  F.P.  Baldonado  J.R.  Bame  S.J.  Casey  P.J.  Dirks  G.  Everett  D.T.  Gosling  J.T.  Grace  K.M.  Guerrero  D.R.  Kolar  J.D.  Kroesche  J.L.  Lockhart  W.L.  McComas  D.J.  Mietz  D.E.  Roese  J.  Sanders  J.  Steinberg  J.T.  Tokar  R.L.  Urdiales  C.  Wiens  R.C. 《Space Science Reviews》2003,105(3-4):627-660
The Genesis Ion Monitor (GIM) and the Genesis Electron Monitor (GEM) provide 3-dimensional plasma measurements of the solar wind for the Genesis mission. These measurements are used onboard to determine the type of plasma that is flowing past the spacecraft and to configure the solar wind sample collection subsystems in real-time. Both GIM and GEM employ spherical-section electrostatic analyzers followed by channel electron multiplier (CEM) arrays for detection and angle and energy/charge analysis of incident ions and electrons. GIM is of a new design specific to Genesis mission requirements whereas the GEM sensor is an almost exact copy of the plasma electron sensors currently flying on the ACE and Ulysses spacecraft, albeit with new electronics and programming. Ions are detected at forty log-spaced energy levels between ∼ 1 eV and 14 keV by eight CEM detectors, while electrons with energies between ∼ 1 eV and 1.4 keV are measured at twenty log-spaced energy levels using seven CEMs. The spin of the spacecraft is used to sweep the fan-shaped fields-of-view of both instruments across all areas of the sky of interest, with ion measurements being taken forty times per spin and samples of the electron population being taken twenty four times per spin. Complete ion and electron energy spectra are measured every ∼ 2.5 min (four spins of the spacecraft) with adequate energy and angular resolution to determine fully 3-dimensional ion and electron distribution functions. The GIM and GEM plasma measurements are principally used to enable the operational solar wind sample collection goals of the Genesis mission but they also provide a potentially very useful data set for studies of solar wind phenomena, especially if combined with other solar wind data sets from ACE, WIND, SOHO and Ulysses for multi-spacecraft investigations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT   总被引:3,自引:0,他引:3  
An electron analyser to measure the three-dimensional velocity distribution of electrons in the energy range from 0.59 eV to 26.4 keV on the four spacecraft of the Cluster mission is described. The instrument consists of two sensors with hemispherical electrostatic energy analysers with a position-sensitive microchannel plate detectors placed to view radially on opposite sides of the spacecraft. The intrinsic energy resolutions of the two sensors are 12.7% and 16.5% full width at half maximum. Their angular resolutions are 2.8° and 5.3° respectively in an azimuthal direction and 15° in a polar direction. The two sensors will normally measure in different overlapping energy ranges and will scan the distribution in half a spacecraft rotation or 2 s in the overlapped range. While this is the fastest time resolution for complete distributions, partial distributions can be recorded in as little as 62.5 ms and angular distributions at a fixed energy in 7.8 ms. The dynamic range of the instrument is sufficient to provide accurate measurements of the main known populations from the tail lobe to the plasmasheet and the solar wind. While the basic structure of the instrument is conventional, special attention has been paid in the design to improving the precision of the instrument so that a relative accuracy of the order of 1% could be attained in flight in order to measure the gradients between the four spacecraft accurately; to decreasing the minimum energy covered by this technique from 10 eV down to 1 eV; and to providing good three dimensional distributions.  相似文献   

10.
Elphic  R.C.  Means  J.D.  Snare  R.C.  Strangeway  R.J.  Kepko  L.  Ergun  R.E. 《Space Science Reviews》2001,98(1-2):151-168
The FAST magnetic field investigation incorporates a tri-axial fluxgate magnetometer for DC and low-frequency (ULF) magnetic field measurements, and an orthogonal three-axis searchcoil system for measurement of structures and waves corresponding to ELF and VLF frequencies. One searchcoil sensor is sampled up to 2 MHz to capture the magnetic component of auroral kilometric radiation (AKR). Because of budget, weight, power and telemetry considerations, the fluxgate was given a single gain state, with a 16-bit dynamic range of ±65536 nT and 2 nT resolution. With a wide variety of FAST fields instrument telemetry modes, the fluxgate output effective bandwidth is between 0.2 and 25 Hz, depending on the mode. The searchcoil telemetry products include burst waveform capture with 4- and 16-kHz bandwidth, continuous 512-point FFTs of the ELF/VLF band (16 kHz Nyquist) provided by a digital signal processing chip, and swept frequency analysis with a 1-MHz bandwidth. The instruments are operating nominally. Early results have shown that downward auroral field-aligned currents, well-observed over many years on earlier missions, are often carried by accelerated electrons at altitudes above roughly 2000 km in the winter auroral zone. The estimates of current from derivatives of the field data agree with those based on flux from the electrons. Searchcoil observations help constrain the degree to which, for example, ion cyclotron emissions are electrostatic.  相似文献   

11.
HYDRA is an experimental hot plasma investigation for the POLAR spacecraft of the GGS program. A consortium of institutions has designed a suite of particle analyzers that sample the velocity space of electron and ions between 2 keV/q – 35 keV/q in three dimensions, with a routine time resolution of 0.5 s. Routine coverage of velocity space will be accomplished with an angular homogeneity assumption of 16°, appropriate for subsonic plasmas, but with special 1.5° resolution for electrons with energies between 100 eV and 10 keV along and opposed to the local magnetic field. This instrument produces 4.9 kilobits s–1 to the telemetry, consumes on average 14 W and requires 18.7 kg for deployment including its internal shielding. The scientific objectives for the polar magnetosphere fall into four broad categories: (1) those to define the ambient kinetic regimes of ions and electrons; (2) those to elucidate the magnetohydrodynamic responses in these regimes; (3) those to assess the particle populations with high time resolution; and (4) those to determine the global topology of the magnetic field. In thefirst group are issues of identifying the origins of particles at high magnetic latitudes, their energization, the altitude dependence of the forces, including parallel electric fields they have traversed. In thesecond group are the physics of the fluid flows, regimes of current, and plasma depletion zones during quiescent and disturbed magnetic conditions. In thethird group is the exploration of the processes that accompany the rapid time variations known to occur in the auroral zone, cusp and entry layers as they affect the flow of mass, momentum and energy in the auroral region. In thefourth class of objectives are studies in conjunction with the SWE measurements of the Strahl in the solar wind that exploit the small gyroradius of thermal electrons to detect those magnetic field lines that penetrate the auroral region that are directly open to interplanetary space where, for example, the Polar Rain is observed.  相似文献   

12.
The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120° apart around the Juno spacecraft to measure complete electron distributions from ~0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ~5 eV to ~50 keV over an instantaneous field of view of 270°×90° in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with mm~2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.  相似文献   

13.
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113–432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg × 0.1 deg for illuminated disc observations and 1 deg × 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg × 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170–432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.  相似文献   

14.
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s–1.  相似文献   

15.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   

16.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   

17.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   

18.
Medium energy neutral atom (MENA) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Pollock  C.J.  Asamura  K.  Baldonado  J.  Balkey  M.M.  Barker  P.  Burch  J.L.  Korpela  E.J.  Cravens  J.  Dirks  G.  Fok  M.-C.  Funsten  H.O.  Grande  M.  Gruntman  M.  Hanley  J.  Jahn  J.-M.  Jenkins  M.  Lampton  M.  Marckwordt  M.  McComas  D.J.  Mukai  T.  Penegor  G.  Pope  S.  Ritzau  S.  Schattenburg  M.L.  Scime  E.  Skoug  R.  Spurgeon  W.  Stecklein  T.  Storms  S.  Urdiales  C.  Valek  P.  van Beek  J.T.M.  Weidner  S.E.  Wüest  M.  Young  M.K.  Zinsmeyer  C. 《Space Science Reviews》2000,91(1-2):113-154
The Medium Energy Neutral Atom (MENA) imager was developed in response to the Imaging from the Magnetopause to the Aurora for Global Exploration (IMAGE) requirement to produce images of energetic neutral atoms (ENAs) in the energy range from 1 to 30 keV. These images will be used to infer characteristics of magnetospheric ion distributions. The MENA imager is a slit camera that images incident ENAs in the polar angle (based on a conventional spherical coordinate system defined by the spacecraft spin axis) and utilizes the spacecraft spin to image in azimuth. The speed of incident ENAs is determined by measuring the time-of-flight (TOF) from the entrance aperture to the detector. A carbon foil in the entrance aperture yields secondary electrons, which are imaged using a position-sensitive Start detector segment. This provides both the one-dimensional (1D) position at which the ENA passed through the aperture and a Start time for the TOF system. Impact of the incident ENA on the 1D position-sensitive Stop detector segment provides both a Stop-timing signal and the location that the ENA impacts the detector. The ENA incident polar angle is derived from the measured Stop and Start positions. Species identification (H vs. O) is based on variation in secondary electron yield with mass for a fixed ENA speed. The MENA imager is designed to produce images with 8°×4° angular resolution over a field of view 140°×360°, over an energy range from 1 keV to 30 keV. Thus, the MENA imager is well suited to conduct measurements relevant to the Earth's ring current, plasma sheet, and (at times) magnetosheath and cusp.  相似文献   

19.
The two-dimensional electron spectrometer onFreja consists of a top-hat-type electrostatic analyzer with the addition of entrance aperture deflection plates. The field of view of the concentric-hemisphere analyzer is modified from a plane to a cone up to 25° from this plane by application of bipolar high voltages to the deflection plates. Fast high-voltage sweeps allow full 10 eV–25 KeV, 500-point distribution function measurements in 32 ms. Constant-energy or limited energy-sweep modes allow time resolutions down to 1 ms.A set of electronics combines the electron data with F4 wave data to allow on-board calculations of cross-correlations between electron fluxes and wave electric fields. Additionally, a fast signal processor is capable of searching the electron pulse sequence from one or several channeltrons for high-frequency modulations in the electron flux.  相似文献   

20.
Satellite and rocket measurements of auroral electrons (which have been made since Brown's (1966) and Pfister's (1967) papers have appeared) are reviewed, and the salient characteristics of auroral electrons which emerge from all types of measurements are summarized. Effects of the atmosphere on the energy distribution of electron fluxes are discussed. Ionization rates associated with typical fluxes are derived. Observable effects produced in the atmosphere and the fate of auroral electrons are briefly described.This paper does not discuss the role of auroral protons (or particles). A recent review on the subject has been given by Eather (1967).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号