首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
针对含SrCO3低燃速HTPB推进剂的燃烧特性,进行了不同压强或初温条件下的燃速测量、近距单幅摄影及CCD图像采集、SEM-能谱分析、TG—DTG分析等实验研究。结果表明:SrCO3的使用可显著降低推进剂的燃速压强指数和温度敏感系数;压强因素比初温条件对燃烧火焰形貌的影响大;高、常温熄火表面元素皆发生聚集,但在不同温度下熄火,元素的含量及各元素重叠的相对位置发生改变;添加SrCO3会让AP的分解峰向高温方向移动,抑制AP的分解并降低燃速,导致AP的两分解峰之间失重速率与热释放量增加,使凝相燃烧表面温度升高,燃速温度系数降低。  相似文献   

2.
国外GAP推进剂研制现状   总被引:8,自引:1,他引:8  
综述了缩水甘油叠氮聚醚(GAP)及其推进剂的热、力学及弹道性能,GAP推进剂有较高的燃速和能量,但其燃速压强指数和温度敏感系数偏高。GAP推进剂的力学性能较差,改性GAP和支化GAP更具吸引力。GAP推进剂可用于燃气发生剂、微烟推进剂、高能推进剂及改性双基推进剂。  相似文献   

3.
用一种多分散的含铝固体推进剂的燃烧模型来确定具有单峰氧化剂分布的AP/Al/HTPB 推进剂的发动机温度敏感系数.铝粉含量在(0~20)%(质量百分比)之间变化,推进剂燃面与喷管喉面之比为250~500.结果表明,推进剂铝粉含量对发动机温度敏感系数的影响与发动机的燃喉面积比 K_H 有关.通常,增加燃喉面积比,发动机温度敏感系增至某一最大值,然后随发动机燃喉面积比的增加而减小.燃速系数和压强指数随初温和铝粉含量的变化,对发动机温度敏感系数有明显影响。而特征速度对温度敏感系数影响不大,但常常是增加的。  相似文献   

4.
高燃速丁羟推进剂配方研究   总被引:3,自引:0,他引:3  
通过多种途径的试验,对高燃速丁羟推进剂配方进行了研究.试验结果表明,采用超细防结块氧化剂和液固组合燃速催化剂能使推进剂的燃速达到70mm/s以上(在6.864Mpa压强下);采用组合工艺助剂可改善推进剂工艺性能.本推进剂燃烧稳定,压强指数和温度敏感系数较低,力学性能良好,为高燃速推进剂的研制奠定了良好的基础.  相似文献   

5.
以“价电子反应”稳态燃烧模型和模拟计算方法,模拟计算了AP粒径、粒径分布宽度、A1含量、A1粒径及压力对“AP/A1/HTPB/催化剂”系列推进剂的燃速温度敏感系数λ_P和压力指数的影响规律,并导出了λ_P与燃面温度T_s、凝聚相反应热Q_s和dQ_s/dT_0间的关系式.  相似文献   

6.
通过测试添加了两种不同燃速催化剂的丁羟推进剂在较宽压力段的燃速,发现草酸铵在高压下降燃速作用表现为“失效”,推进剂燃速压力指数聚升,而卡托率能提高压下推进剂的燃速,起到降压力指数的作用,并用BDP稳态燃烧物理模型作了相应的解释,理论分析与实验结果相符。  相似文献   

7.
本文报导含铝 AP/HTPB 复合推进剂的温度和压力敏感性理论研究结果。研究使用的是一种多重火焰模型(改进型小总体模型),这个模型考虑了铝粉对推进剂燃速的影响。报导的重点是温度和压力敏感性计算值与推进剂中氧化剂粒度和铝粉粒度、含量的关系。研究结果表明,粗粒度氧化剂低燃速推进剂,提高铝粉含量或使用较细的铝粉,可显著降低温度敏感性。在理论上压力敏感性(压力指数)也有同样倾向。为说明这类推进剂显示这种倾向的原因,对于所使用的模型进行了相当详细的讨论。  相似文献   

8.
本文论述了战术导弹动力装置的特点及采用固体推进剂的动力装置在战术导弹中的地位;分析了国外战术导弹所用固体推进剂的研制与发展特点;并根据未来战术导弹对动力装置的要求,预测了战术导弹应用的固体推进剂的发展.过去提出的比冲、比重、力学性能、玻璃化温度、压力指数、燃速温度敏感系数等所谓八大指标,已不能完全适应未来发展的需要,还要求更多的性能如燃烧特性、老化特性、或某神单项突出的特性如无烟、承受较大冲击过载等,以满足多种动力装置发展的需要.进一步改善推进剂的使用性、适应性、品种配套、降低成本都将是固体推进剂发展的重要课题,“混用”或组合将成为显著改善推进剂性能的重要途径.  相似文献   

9.
根据呈正、负压力指数燃速特性的固体推进剂的稳态燃烧模型,导出了一个新的压力响应函数公式,它可用来说明燃速压力指数为零、正、负各类推进剂的压力耦合现象。燃烧中的推进剂被划分为两部份:一部份是由熔化了的粘合剂所覆盖的氧化剂表面与其相对应的粘合剂表面所组成,而另一部份则由未被覆盖的氧化剂表面同剩下的粘合剂表面组成。与以往的各类模型不同,在上述的前一部份燃烧表面的燃烧中,考虑了氧化剂在熔化粘合剂覆盖的条件下存在着反向气化和凝相反应,故使所得的压力响应函数的实部在推进剂稳态燃速的压力指数为零或负值时也可为正值。利用所获得的压力响应函数的表达式对试验用推进剂(S04-5A)作了定量计算,计算结果满意地说明了,负压力指数推进剂在氧化剂被熔化粘合剂大面积复盖时也存在不稳定燃烧的现象。这不仅克服了以往所有压力响应函数表达式均难以用于负压力指数推进剂的缺陷,而且也从一个侧面反映了呈正、负压力指数燃速特性的固体推进剂稳态燃烧模型的正确性。  相似文献   

10.
为了阐明双基推进剂基体内HMX粒子的作用,研究了HMX基复合改性双基推进剂燃速的温度敏感性。虽然单位质量推进剂中包含的能量随着HMX重量分数ξ的增加而提高。但是,当ξ<~0.5时,燃速随着ξ的增加而下降。然而,当ξ>~0.5时,燃速又随着ξ而提高。换句话说,在定压下,ξ≌0.5时,燃速为最小值。温度敏感系数随着ξ上升而单调地下降。测试结果表明,当ξ上升时,嘶嘶区的反应速率单调下降,燃烧表面的反应热单调地增加。HMX—CMDB推进剂的这种燃烧模式证明了实测的燃速和温度敏感特性。  相似文献   

11.
本文提出了一种发动机温度敏感系数的新表达式,该温度敏感系数可由燃速、特征速度和燃烧室压力与K_n的关系来确定。  相似文献   

12.
本文研究了燃速参数之间的关系。象确定速度系数和速度指数关系那样,确定了温度和压力敏感系数之间的麦克斯韦关系。按一般条件,导出了发动机和速度敏感系数之间的关系。同时由Geckler和Sprenger根据一般经验公式导出了数据相容性关系。  相似文献   

13.
为了解嵌金属丝推进剂的燃速沿金属丝的变化,并求出控制这类推进剂燃速的因素,对嵌银丝双基推进剂作了研究。沿金属丝的燃速主要取决于金属丝种类、尺寸和推进剂组分。用具有各种燃烧特性的双基推进剂,测量了沿银丝的燃速,并研究了光焰区、暗区和沸腾区的影响。利用微型热电偶测量了推进剂中靠近银丝部分的温度分布。根据试验结果,明确了沿银丝的燃速控制因素是沸腾区的温度梯度和暗区的温度。位于燃面上方的光焰区既不影响推进剂的燃速,也不影响沿银丝的燃速。  相似文献   

14.
在价电子燃烧模型的基础上引进分形理论,提出复合固体推进剂的价电子分形燃烧模型,在此基础上进行了高能固体推进剂燃速和压强指数的模拟计算,研究了固体填料粒径和压力对燃速的影响规律。结果表明,价电子分形燃烧模型适用于高能固体推进剂的燃烧性能计算,燃速及压强指数模拟计算结果与测试结果吻合较好,大部分误差在±10%范围以内。  相似文献   

15.
火箭发动机内真实的推进剂燃速往往由于高温高压难以测量。为探讨燃速对于工况的依赖性.对水下应用的固体火箭发动机试验器的试验结果用最小二乘法进行了辨识。引用三种燃速公式进行辨识,得到了一种新型推进剂稳态燃速模型参数的最优辨识值。结果表明:指数式的辨识结果得到的残差最小,指数式是描述该新型推进剂燃速规律的合理格式。  相似文献   

16.
分析了碳单元的结构特征,推论出双基和改性双基推进剂的分解温度、表面温度不随压力和初温而改变,以及碳单元顶端温度相对稳定.依此讨论了燃速温度系数及其规律.  相似文献   

17.
复合推进剂燃烧性能与组分热分解特性的关系实验研究   总被引:2,自引:0,他引:2  
应用常压和高压差热分析技术研究了催化剂对推进剂组分热分解的影响,测定了催化剂共晶和混合加入时相应推进剂的燃速,分析了热分析与推进剂燃烧过程的异同点,引入高氯酸铵(AP)高温分解起始温度(T_(L-H))的概念并以T_(L-H)衡量了催化剂共晶加入时对丁羟推进剂燃速和压力指数的影响.研究表明,AP高温分解过程对复合推进剂燃烧特性影响较大;热分析与燃速相关性和催化剂加入方式有关;共晶催化剂作用下的复合推进剂燃速特性与氧化剂高温分解有密切关系;压强是影响推进剂燃速和热分解相关性的重要因素,高压下AP高温分解过程和变化能更大程度地反映到推进剂燃速中去。本文同时对产生上述现象的原因作了分析。  相似文献   

18.
GAP推进剂的燃烧特性   总被引:5,自引:0,他引:5  
研究了含不同氧化剂的GAP推进剂燃烧特性,观察了其火焰结构及燃烧表面,测量了推进剂燃速与的关系。研究结果表明,GAP/RDX推进剂的燃速由化学反应速率决定,燃速的影响较大;则GAP/AP推进剂的燃速主要受扩散火焰控制;加入H系列燃速催化剂明显地改善了GAP/RDX推进剂的燃烧性能。H系列燃速催化剂可提高GAP/RDX推进剂的氏压燃速,并使得压强指数(2.94-8.83MPa)由0.88下降至0.6  相似文献   

19.
添加剂HMX对AP/HTPB复合推进剂燃速行为的影响   总被引:1,自引:1,他引:1  
本文研究了添加剂HMX对AP丁羟推进剂燃速的影响。试验研究发现:在AP/HTPB复合推进剂中加入HMX时,其燃速降低;随着推进剂中HMX含量的增加,其燃速压力指数呈现出先下降后上升的“情形”;当HMX的粒度变细时,推进剂的压力指数显著降低。我们基于BDP模型的气相火焰结构设想,并强调燃烧表面上HMX熔层在燃烧过程中的作用,提出了一个多重竞争火焰—凝聚相结构和反应模型。它能解释AP—HMX双元系统丁羟推进剂的燃速行为和现象,并能对这种推进剂的燃速和压力指数调节的各种途径进行预示。此外,还提出了BDP和GDF模型一致性的设想和一些等价概念。  相似文献   

20.
降低NEPE推进剂燃速压强指数研究   总被引:1,自引:1,他引:1  
研究了两种新型含铅燃速催化剂(ct203-1,ct203-2)对NEPE推进剂燃速压强指数的影响,采用小配方实验和DSC研究了两种催化剂与硝酸酯的相容性以及对推进剂固化反应的影响和对RDX热分解的催化作用,并利用恒压静态燃速仪测量试了推进剂在4-11MPa下的燃烧速度和燃速压强指数。结果表明峡谷种催化剂都表现出与硝酸酯良好的相容性,对推进剂的固化反应有明显的催化作用,对RDX的热分解行为则基本没有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号