首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
降低NEPE推进剂燃速压强指数研究   总被引:1,自引:1,他引:1  
研究了两种新型含铅燃速催化剂(ct203-1,ct203-2)对NEPE推进剂燃速压强指数的影响,采用小配方实验和DSC研究了两种催化剂与硝酸酯的相容性以及对推进剂固化反应的影响和对RDX热分解的催化作用,并利用恒压静态燃速仪测量试了推进剂在4-11MPa下的燃烧速度和燃速压强指数。结果表明峡谷种催化剂都表现出与硝酸酯良好的相容性,对推进剂的固化反应有明显的催化作用,对RDX的热分解行为则基本没有  相似文献   

2.
添加剂HMX对AP/HTPB复合推进剂燃速行为的影响   总被引:1,自引:1,他引:1  
本文研究了添加剂HMX对AP丁羟推进剂燃速的影响。试验研究发现:在AP/HTPB复合推进剂中加入HMX时,其燃速降低;随着推进剂中HMX含量的增加,其燃速压力指数呈现出先下降后上升的“情形”;当HMX的粒度变细时,推进剂的压力指数显著降低。我们基于BDP模型的气相火焰结构设想,并强调燃烧表面上HMX熔层在燃烧过程中的作用,提出了一个多重竞争火焰—凝聚相结构和反应模型。它能解释AP—HMX双元系统丁羟推进剂的燃速行为和现象,并能对这种推进剂的燃速和压力指数调节的各种途径进行预示。此外,还提出了BDP和GDF模型一致性的设想和一些等价概念。  相似文献   

3.
AP-CMDB推进剂燃速压强指数的变化分析与辨识   总被引:2,自引:0,他引:2  
采用燃烧模型分析了AP-CMDB推进剂的燃速压强指数与推进剂配方组成和火箭发动机燃烧室压强之间的耦合关系.指出了该推进剂的燃速压强指数随AP颗粒和双基母体的燃速差而变化,对于确定配方组成的AP-CMDB推进剂,则该指数将主要随压强而变化,且近似呈对数关系。采用C-K法对特定配方进行了压强指数辨识,辨识结果能够较准确地预示脉冲推力器的内弹道性能。  相似文献   

4.
铝粉的辐射热反馈及对固体推进剂压强指数的影响   总被引:2,自引:1,他引:2  
研究了含铝,含细AP固体推进剂中铝粉对推进剂表面的辐射热反馈,得出这种反馈是使该推进剂燃速压强指数上升的主要原因之一,在配方中添加超细铝粉可能氏压强指数的上升。  相似文献   

5.
降低硝胺推进剂燃速和压强指数的暗区增强理论   总被引:2,自引:2,他引:2  
在分析总结高能硝胺推进剂燃速特性和燃烧火焰结构的基础上,提出了重点降低高压燃速及其压强指数的暗区增强理论;并选择了数种添加剂对上述理论进行了验证。实验结果表明,所选择或合成的添加剂都可同时降低燃速和压强指数;燃烧火焰结构验证实验也表明,加入PC30/PC35组合添加剂显著增加了暗区的厚度,降低了暗区的压强敏感性和总化学反应级数;同时组合添加剂的抑制作用效率随着压强的增加而增强,这导致推进剂在燃速降  相似文献   

6.
通过燃速测试、高压DSC和TG实验,研究了AP含量及粒度级配对含硼富燃推进剂压强指数的影响。压强指数采用r=apn方程求得。燃速测试结果表明,AP含量增加,AP重均直径减小,均使压强指数升高。DSC和TG分析表明,推进剂中AP含量增加,重均直径越小,推进剂失重速度较快,高压时推进剂放热量增加,燃速增加较大,因而压强指数较高。  相似文献   

7.
硝胺对低燃速丁羟推进剂能量与燃速的影响   总被引:5,自引:0,他引:5  
鲁国林 《固体火箭技术》2001,24(2):45-47,63
从推进剂的能量特性和燃烧性能的角度探索了硝胺(RDX、HMX)在低燃速丁羟推进剂应用的可能性,结果表明:保持固体含量和铝粉含量恒定时,在推进剂中加入一定量的硝胺部分取代AP,可以提高低燃速丁羟推进 理论比冲和显著降低推进剂的燃速压强指数,但加入RDX、HMX降低丁羟推进剂燃速的幅度非常小。  相似文献   

8.
分析了AP含量、增塑荆含量、催化剂种类、含能粘合剂体系等对NEPE推进剂燃烧性能的影响,找出了提高其燃速压强指数的有效方法.同时,采用DSC、单幅摄影、燃烧波测试等方法,研究了ZH-2催化NEPE推进荆的机理.实验结果表明,NEPE推进剂燃速压强指数提高至0.67,同时在宽压强(1.5~30 MPa)范围内消除了压强指数拐点.  相似文献   

9.
本文介绍以 CO_2激光器为辐射热源来研究在1.0,2.0,3.0,4.0MPa 压力下热辐射对四种复合推进剂燃速的影响.实验结果表明,燃速随着辐射热流的增加而增加;在恒辐射热流的作用下,PU 和 HTPB 推进剂在有、无热辐射时的燃速比随压力的变化趋势是不同的,前者随压力上升而增大,后者则减小;Al 粉的加入不改变上述趋势,但改变燃速比的大小.文中还运用 GDF 燃速模型。研究了药条燃速在有、无热辐射时的相关性及其随压力的变化关系.  相似文献   

10.
叠氮粘合剂推进剂热分解及燃烧性能研究综述   总被引:5,自引:3,他引:5  
综述了叠氮类粘合剂GAP,BAMO和AMMO的热分解及共推进剂的燃烧性能,认为叠氮类推进剂中-N3基受热易分解,因而基础燃速高,燃速温度敏感性大;在配方中引入有效的添加剂,可提高该类推进剂的燃速,降低其压强度指数。  相似文献   

11.
复合推进剂燃烧性能与组分热分解特性的关系实验研究   总被引:2,自引:0,他引:2  
应用常压和高压差热分析技术研究了催化剂对推进剂组分热分解的影响,测定了催化剂共晶和混合加入时相应推进剂的燃速,分析了热分析与推进剂燃烧过程的异同点,引入高氯酸铵(AP)高温分解起始温度(T_(L-H))的概念并以T_(L-H)衡量了催化剂共晶加入时对丁羟推进剂燃速和压力指数的影响.研究表明,AP高温分解过程对复合推进剂燃烧特性影响较大;热分析与燃速相关性和催化剂加入方式有关;共晶催化剂作用下的复合推进剂燃速特性与氧化剂高温分解有密切关系;压强是影响推进剂燃速和热分解相关性的重要因素,高压下AP高温分解过程和变化能更大程度地反映到推进剂燃速中去。本文同时对产生上述现象的原因作了分析。  相似文献   

12.
研究了过渡金属氧化物(TMO)及其复配物对非壅塞固体火箭冲压发动机铝镁贫氧推进剂燃烧特性的影响。研究发现,氧化铁对提高铝镁贫氧推进剂燃速的作用显著。过渡金属氧化物组合(氧化钴/氧化铬和氧化铜/氧化铬)对提高铝镁贫氧推进剂的燃速催化作用显著,且含组合催化剂(氧化钴/氧化铬、氧化铜/氧化铬和氧化铁/氧化铜)的盆氧推进剂具有高的燃速压强指数。  相似文献   

13.
硝胺丁羟推进剂高、低压燃烧性能研究   总被引:1,自引:0,他引:1  
通过几种燃速调节剂对含奥克托金(HMX)的丁羟橡胶复合推进剂高,低压的燃烧性能影响实验研究,结果表明,二茂铁衍生物(T27)能有效调节推进剂燃速和降低高,低压段的压强指数,复合燃速调节剂(T27+CB),并可消除高压段出现的燃速突变现象,该结果可为单室双推力发动机推进剂燃速设计提参考。  相似文献   

14.
采用推进剂静态燃烧性能测试和实验发动机动态实验等方法,研究了球形铝粉替代大量吕粉后推进剂燃速特性的变化情况。研究发现,含球形铝粉推进剂的燃速压强指数明显高于含非球形铝粉推进剂,而且含球形铝粉推进剂的低压燃速显著降低。经过对铝粉燃烧过程的研究,讨论了球形铝粉和非球形铝粉对推进剂燃烧过程的影响,并初步解释了含球形铝粉推进剂低压燃烧的下降原因。  相似文献   

15.
针对含SrCO3低燃速HTPB推进剂的燃烧特性,进行了不同压强或初温条件下的燃速测量、近距单幅摄影及CCD图像采集、SEM-能谱分析、TG—DTG分析等实验研究。结果表明:SrCO3的使用可显著降低推进剂的燃速压强指数和温度敏感系数;压强因素比初温条件对燃烧火焰形貌的影响大;高、常温熄火表面元素皆发生聚集,但在不同温度下熄火,元素的含量及各元素重叠的相对位置发生改变;添加SrCO3会让AP的分解峰向高温方向移动,抑制AP的分解并降低燃速,导致AP的两分解峰之间失重速率与热释放量增加,使凝相燃烧表面温度升高,燃速温度系数降低。  相似文献   

16.
高氯酸铵/硝胺复合推进剂中主氧化剂地位的确定   总被引:2,自引:0,他引:2  
本文提出了高氯酸铵/硝胺复合推进剂在燃烧性能方面存在主氧化剂的概念,并利用建立的燃烧模型,从氧化剂燃烧单元对燃面能量的贡献,扩散距离的不同求解方法对燃速和压力指数计算结果的影响,以及硝胺含量与推进剂压力指数的关系三个方面探讨了确定主氧化剂的方法。经过分析,得知主氧化剂对推进剂燃烧性能起着重要影响,因此,调节高氯酸铵/硝胺推进剂燃烧性能的方法与调节只含主氧化剂推进剂燃烧性能的各种方法相同。  相似文献   

17.
复合推进剂燃速压力指数与温度敏感系数的研究   总被引:2,自引:0,他引:2  
推进剂压力指数与温度敏感系数的测定,常常因测量数据数量少,致使不确定度较大。为了解决该问题,将推进剂速压力指数与温度敏感系数的多次测量结果进行了综合统计计算,给出了这两个参的准确数值。文中分析了燃速测量精度对结果的影响,提出测量控制方法,指出不同区域燃烧速度压力指数的变化。建议小发动机测量应以验证药条结果为主。  相似文献   

18.
在价电子燃烧模型的基础上引进分形理论,提出复合固体推进剂的价电子分形燃烧模型,在此基础上进行了高能固体推进剂燃速和压强指数的模拟计算,研究了固体填料粒径和压力对燃速的影响规律。结果表明,价电子分形燃烧模型适用于高能固体推进剂的燃烧性能计算,燃速及压强指数模拟计算结果与测试结果吻合较好,大部分误差在±10%范围以内。  相似文献   

19.
讨论了影响复合固体推进剂燃速压强指数的主要因素。它们包括:(1)粘合剂类型;(2)固体含量;(3)氧化剂类型,粘度,配比及含量;(4)金属添加剂;(5)弹道性能剂;(6)推进剂制造工艺。  相似文献   

20.
为了获得变推力发动机用高压强指数聚叠氮缩水甘油醚(GAP)推进剂配方,采用靶线法研究了氧化剂的种类、粒径及配比、燃速催化剂的种类及含量、以及增塑比对GAP推进剂静态燃烧性能的影响规律,采用?118标准试验发动机对GAP推进剂进行了动态燃烧性能测试。研究表明,通过综合因素调节获得了一种高压强指数GAP推进剂配方,且当燃速催化剂RC-4含量1%时,GAP推进剂在1~15 MPa范围的动态压强指数高达0.66,满足变推力发动机对推进剂压强指数的要求,同时高压区间(9~15 MPa)的动态压强指数为0.51,低于1~15 MPa的压强指数,这有利于推进剂在高压范围内的稳定燃烧,为变推力发动机在高压范围内的正常工作提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号