首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
The Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is one of ten instruments on the Upper Atmosphere Research Satellite (UARS) — one of two instruments measuring the solar ultraviolet irradiance. The instrument is a three channel spectrometer covering the spectral range 120 to 420nm with a spectral resolution of approximately 0.2nm. It has been successfully operating since October 1991, and has now provided more than eight years of data, extending from near the peak of solar cycle 22, through solar minimum and into the new cycle. The data provide time series that display solar variations over time scales from a few days up to the 11-year solar cycle. Quantitative estimates of amplitudes of both rotational modulation and the solar cycle variation in the 1991–1999 epoch are given for the UV spectrum between 119 and 300nm.  相似文献   

2.
3He-rich solar energetic particle (SEP) events show huge enrichments of 3He and association with kilovolt electrons and Type-III radio bursts. Observations from a new generation of high resolution instruments launched on the Wind, ACE, Yohkoh, SOHO, TRACE, and RHESSI spacecraft have revealed many new properties of these events: the particle energy spectra are found to be either power-law or curved in shape, with the 3He spectrum often being distinctly different from other species. Ultra-heavy nuclei up to >200 amu are found to be routinely present at average enrichments of >200 times solar-system abundances. The high ionization states previously observed near ∼1 MeV/nucleon have been found to decrease towards normal solar coronal values in these events. The source regions have been identified for many events, and are associated with X-ray jets and EUV flares that are associated with magnetic reconnection sites near active regions. This paper reviews the current experimental picture and theoretical models, with emphasis on the new insights found in the last few years.  相似文献   

3.
The advantages of high resolution UV spectroscopy for the investigation of the solar atmosphere are stressed while the limitations in the areas of instrumentation and diagnosis are discussed. The recent achievements (made essentially by Skylab, OSO-8 and rocket instruments) are reviewed and discussed.It is shown that high resolution UV solar spectroscopy has improved our knowledge of the dynamics of the upper layers of the solar atmosphere. Within the present instrument capabilities the birth of coronal expansion is shown to take place at the top of the transition region. The existence of downward flows over the bright regions of the network is evidenced from redshifts or transition region and chromospheric optically thin lines: velocities as large as 22 km s-1 have been measured in O vi. Short period waves (95 s) have been detected in lines of Si ii at chromospheric levels in addition to the well known 300s and 180 s photospheric and chromospheric oscillations. There is strong evidence that optically thin chromospheric and transition region lines are broadened by a nonthermal velocity component which is maximum at 1.3 × 105 K and decreases at higher temperatures. This may indicate the presence of unresolved acoustic or magnetohydrodynamic waves so oftenly set fourth as the source of chromospheric and coronal heating.Contradictions between the various results are pointed out and discussed. They might be attributed to the different angular resolution of the instruments, a key parameter for future space observations. It is suggested that the Solar Optical Telescope (SOT) and the Grazing Incidence Solar Telescope (GRIST) which are presently under phase A studies at NASA and ESA be considered as a tandem of instruments to fly on Spacelab in the 1980's. Both their angular and spectral resolution appear sufficient to resolve most of the problems under discussion today.Review presented at the Vth Conference on UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas, London, July 4–7, 1977.  相似文献   

4.
The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (~100,000 years), the obliquity (angle between the equator and the orbital plane) (~40,000 years) and the precession of the Earth’s axis (~20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.  相似文献   

5.
After a brief historical review of the discovery of helium in the terrestrial atmosphere, the production mechanisms of the isotopes He4 and He3 are discussed. Although the radioactive production of He4 in the Earth is well understood, some uncertainty still exists for the degassing process leading to an atmospheric influx of (2.5 ±1.5) × 106 atoms cm–2 s–1. Different production mechanisms are possible for He3 leading to an influx of (7.5±2.5) atoms cm–2 s–1. Observations of helium in the thermosphere show a great variability of this constituent. The different mechanisms proposed to explain the presence of the winter helium bulge are discussed. Since helium ions are present in the topside ionosphere and in the magnetosphere, ionization mechanisms are analyzed. Owing to possible variations and uncertainties in the solar UV flux, the photoionization coefficient is (8±4) × 10–8 s–1. Finally, the helium balance between production in the earth and loss into the interplanetary space is discussed with respect to the different processes which can play an effective role.  相似文献   

6.
Measurements below several MeV/nucleon from Wind/LEMT and ACE/ULEIS show that elements heavier than Zn (Z=30) can be enhanced by factors of ∼100 to 1000, depending on species, in 3He-rich solar energetic particle (SEP) events. Using the Solar Isotope Spectrometer (SIS) on ACE we find that even large SEP (LSEP) shock-accelerated events at energies from ∼10 to >100 MeV/nucleon are often very iron rich and might contain admixtures of flare seed material. Studies of ultra-heavy (UH) SEPs (with Z>30) above 10 MeV/nucleon can be used to test models of acceleration and abundance enhancements in both LSEP and 3He-rich events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. Although most of the UH fluence arrives during LSEP events, UH abundances are relatively more enhanced in 3He-rich events, with the (34<Z<40)/O ratio on average more than 50 times higher in 3He-rich events than in LSEP events. At energies >10 MeV/nucleon, the most extreme event in terms of UH composition detected so far took place on 23 July 2004 and had a (34<Z<40)/O enhancement of ∼250–300 times the standard solar value.  相似文献   

7.
3C 273 is the most extensively studied quasar both from the ground and from space. Recent satellite observations have given important information on the overall electromagnetic spectrum of 3C 273 in the -ray, X-ray, and UV ranges. The most salient results are: (i) the energy per decade of frequency emitted by 3C 273 is nearly constant between 6000 Å and 500 MeV and is 20 × 1046 erg s-1 for H = 50 km s-1 Mpc-1; (ii) there is no absorption in the soft X-ray range in contrast to the X-ray spectrum of Seyfert nuclei; (iii) the optical and UV spectra cannot be fitted by power-law spectra only, and the energy distribution in this range suggests that a substantial fraction of the energy in the UV is emitted as back-body radiation at 20 000 K. If the peculiar shape of the UV spectrum is indeed caused by black-body radiation, then an estimate of the energy emitted under this form is 2.5 × 1046erg s-1, corresponding to an optically thick disk of 1016 cm in diameter.The UV spectrum of 3C 273 shows absorption lines at zero redshift caused by interstellar matter in the disk and halo of our Galaxy. The strength of C iv 1550 in absorption indicates the presence of a hot outer region in the halo. Extragalactic objects with mostly continuous UV spectra, such as 3C 273, are very promising UV sources which allow us to observe the absorbing material over the entire line of sight throughout the galactic halo.  相似文献   

8.
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

9.
Magneto-gravity Waves Trapped in the Lower Solar Corona   总被引:1,自引:0,他引:1  
The possibility of trapped magneto-gravity waves in the lower solar corona with an open magnetic field is discussed. Intensity variations and/or Doppler shifts of relevant UV, EUV and x-ray spectral lines in the chromosphere, transition region and lower corona may reveal the existence of such low-frequency modes (with periods longer than ∼ 1.5 hour). The spectrum may be either discrete or continuous depending on the reflection property of the narrow transition region. These modes can be utilized to probe the dynamics of the upper chromosphere, transition region and lower corona; they may also play an important role in coronal heating. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Solar UV observations reveal a redshifted emission at transition region temperatures, commonly interpreted as a net downflow of plasma. In earlier investigations the magnitude of the redshift has been found to increase with temperature, reaching a maximum at T=105 K, and then to decrease towards higher temperatures. These observations, mostly from Skylab, suggested no significant shift of the O V line at 1218 Å formed at 2.4×105 K. The variation of the downflow velocity with temperature is, however, uncertain since there are few reliable observations of lines formed at higher temperatures.Using spectrograms from the High Resolution Telescope and Spectrograph — HRTS we find an average net redshift of the O V lines at 1218 Å and 1371 Å at all locations extending from disk center to solar limb. A discrepancy between the observed flow velocity in the two lines is probably caused by uncertainty in the available laboratory wavelength of the intercombination line at 1218 Å (2s2 1S0-2s2p3P1).The observed shift in O V is compared with corresponding measurements of lines formed at other temperatures (Si IV, C IV, N IV, O IV, and Fe XII). Large variations in the shift are found along the instrument slit. Thus, blueshifts are also observed with the sites of the largest upflow located in the sunspot umbrae and in a quiet region close to an active region.  相似文献   

11.
    
A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 . Solar observations of especial value for the investigation of the 300–400 region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded.Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

12.
A total of about of 400 orbits during the first year of the ASPERA-3 operation onboard the Mars Express spacecraft were analyzed to obtain a statistical pattern of the main plasma domains in the Martian space environment. The environment is controlled by the direct interaction between the solar wind and the planetary exosphere/ionosphere which results in the formation of the magnetospheric cavity. Ionospheric plasma was traced by the characteristic “spectral lines” of photoelectrons that make it possible to detect an ionospheric component even far from the planet. Plasma of solar wind and planetary origin was distinguished by the ion mass spectrometry. Several different regions, namely, boundary layer/mantle, plasma sheet, region with ionospheric photoelectrons, ray-like structures near the wake boundary were identified. Upstream parameters like solar wind ram pressure and the direction of the interplanetary electric field were inferred as proxy from the Mars Global Surveyor magnetic field data at a reference point of the magnetic pile up region in the northern dayside hemisphere. It is shown that morphology and dynamics of the main plasma domains and their boundaries are governed by these factors as well as by local crustal magnetizations which add complexity and variability to the plasma and magnetic field environment.  相似文献   

13.
Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ∼0.1–60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The Fe/O ratio decreases with increasing energy up to ∼10 MeV/nuc in ∼92% of the events and up to ∼60 MeV/nuc in ∼64% of the events. (2) The rare isotope 3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (3) The heavy ion abundances are not systematically organized by the ion’s M/Q ratio when compared with the solar wind values. (4) Heavy ion abundances from C–Fe exhibit systematic M/Q-dependent enhancements that are remarkably similar to those seen in 3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ∼60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion’s mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process.  相似文献   

14.
We have shown in several recent publications that it is necessary to group the meteorological data according to the phase of the Quasi-Biennial Oscillation (QBO) throughout the year, in order to find a clear signal of the 11-year sunspot cycle (SSC). This work is summarized here. It is the purpose of this paper (1) to update earlier results of the solar cycle – QBO relationship for the northern winter, (2) to stress the interaction between the hemispheres and (3) to summarize the influence of the QBO on the solar variability signal, as well as the influence of the solar variability signal on the QBO throughout the year. For this, the constructed annual mean of the solar cycle – QBO relationship is introduced.  相似文献   

15.
Solar energetic particles (SEPs) provide a sample of the Sun from which solar composition may be determined. Using high-resolution measurements from the Solar Isotope Spectrometer (SIS) onboard NASA’s Advanced Composition Explorer (ACE) spacecraft, we have studied the isotopic composition of SEPs at energies ≥20 MeV/nucleon in large SEP events. We present SEP isotope measurements of C, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni made in 49 large events from late 1997 to the present. The isotopic composition is highly variable from one SEP event to another due to variations in seed particle composition or due to mass fractionation that occurs during the acceleration and/or transport of these particles. We show that various isotopic and elemental enhancements are correlated with each other, discuss the empirical corrections used to account for the compositional variability, and obtain estimated solar isotopic abundances. We compare the solar values and their uncertainties inferred from SEPs with solar wind and other solar system abundances and find generally good agreement.  相似文献   

16.
A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 Å. Solar observations of especial value for the investigation of the 300–400 Å region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded. Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 Å involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

17.
The BL Lac object Mkn 421 was observed by EXOSAT four times over a period of six days in February 1984. Significant X-ray variability was apparent on a timescale of less than a day, but with no accompanying spectral change. The source exhibited a very soft power law X-ray spectrum with an extremely low intrinsic column density (NH1020 cm–2). There was no evidence for an additional hard component attributable to synchrotron self-Compton emission. The observations when combined with other published data imply that significant changes occur in the form of the broad-band UV/X-ray continuum of this source.  相似文献   

18.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and active region compositions and the transition region composition is frequently different from the coronal composition along the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R .  相似文献   

19.
As Ulysses moved inward and southward from mid-1992 to early 1994 we noticed the occasional occurrence of inter-events, lasting about 10 days and falling between the recurrent events, observed at proton energies of 0.48–97 MeV, associated with Corotating Interaction Regions (CIR). These inter-events were present for several sequences of two or more solar rotations at intensity levels around 1% of those of the neighbouring main events. When we compared the Ulysses events with those measured on IMP-8 at 1 AU we saw that the inter-events appeared at Ulysses after the extended emission (>10 days) of large fluxes of solar protons of the same energy that lasted at least one solar rotation at 1 AU. The inter-events fell completely within the rarefaction regions (dv/dt<0) of the recurrent solar wind streams. The interplanetary magnetic field (IMF) lines in the rarefactions map back to the narrow range of longitudes at the Sun which mark the eastern edge of the source region of the high speed stream. Thus the inter-events are propagating at mid-latitudes to Ulysses along field lines free from stream-stream interactions. They are seen in the 0.39–1.28 MeV/nucleon He, which exhibit a faster decay, but almost never in the 38–53 keV electrons. We show that the inter-events are unlikely to be accelerated by reverse shocks associated with the CIRs and that they are more likely to be accelerated by sequences of solar events and transported along the IMF in the rarefactions of the solar wind streams.  相似文献   

20.
Rood  R. T.  Bania  T. M.  Balser  D. S.  Wilson  T. L. 《Space Science Reviews》1998,84(1-2):185-198
We report on our continuing efforts to determine 3He abundances in H II regions and planetary nebulae. Our detections of 3He in some PNe show that some stars produce large amounts of 3He. However the H II region abundances show no evidence for this production. From our sample of > 40 H II regions, the subsample which should yield the most reliable abundances has 3He/H abundances which scatter between 1-2 × 10-5. There is no trend with either galactocentric distance or metallicity. Even if we do not understand the underlying mechanisms, we see empirically that stars neither produce nor destroy 3He in a major way. We thus suggest that the level of the "3He Plateau" (3He/H = 1.5 -0.5 +1.0 × 10-5) is a reasonable estimate for the primordial 3He.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号