首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The equilibrium electron density profile has been computed and compared with measured profiles by Venera 9 and Mariner 5 and 10. The computed electron density profile is seen to show discrepancies with measured data. The contribution of solar wind interaction induced convection to equilibrium electron density profile has been estimated. It is found that the convective processes are less important at lower altitudes, whereas at higher altitudes its contribution becomes dominant. The night side Venus ionosphere is formed due to the transport of O+ and impact ionization of neutral gases by suprathermal electrons. The discrepancies in theoretical and measured electron density profiles provide clear indication of additional energy source of solar wind origin.  相似文献   

2.
Japan’s Venus Climate Orbiter (the Planet-C spacecraft) will be launched in 2008 and will reach an orbit in the ecliptic plane around Venus in 2009. We propose two eXtreme UltraViolet (XUV) imagers to take global two-dimensional snapshots of near-Venus space, including the Venus ionosphere and the interaction region between the solar wind plasma and the Venus ionospheric plasma. The imagers detect the resonantly scattering emissions of oxygen ions (O II 83.4 nm) and atoms (O I 130.3 nm), neutral helium (He I 58.4 nm), and hydrogen (H Ly-α 121.6 nm). Scientific goals are to investigate mechanisms of momentum and mass transfer across the ionopause, of convection in the upper atmosphere and ionosphere, and of atmospheric escape. Especially, we emphasize that sequential images of the O II 83.4-nm emission will enable us to understand temporal evolution of the vortex produced by the Kelvin–Helmholtz (K–H) instability. Though the wave structure due to the K–H instability is generated also at the terrestrial magnetopause, oxygen ions are too tenuous to detect the emission. On the other hand, at the Venus ionopause oxygen ions have enough density to image the resonance emission, i.e., the Venus ionosphere plays a role as a space laboratory for plasma physics.  相似文献   

3.
The ionosphere of Venus is primarily formed by photoionization of a gaseous blanket around Venus. The impact ionization by energetic solar charged particles also plays an important role in the variability of Venusian ionospheric ion, electron density and their temperature profiles. The microscopic variations in the solar wind velocity, particle flux and orientations of frozen-in interplanetary magnetic field determine the solar wind interaction with the Venusian ionosphere. The ion and electron density profiles obtained by Pioneer Venus Orbiter and Pioneer Venus Entry Probes have been analysed in the light of simultaneous solar wind velocity and particle flux. Marked changes in height profiles of ion, electron densities and their temperatures have been found to correlate with the simultaneous changes in the solar wind velocity and particle flux. It is shown that the solar wind plays a more important role in controlling the physical properties and behavior of daytime as well as nighttime ionosphere of Venus, whereas the solar xuv sustains the primary ionization process.  相似文献   

4.
A study of the plasma measurements conducted with the Mariner 5, Venera 9 and 10, and the Pioneer Venus spacecraft in the Venus ionosheath and near wake is presented. The data available indicate that in the inner ionosheath, downstream from the terminator, the density and the velocity of the plasma are significantly smaller than those measured further outside. The slower particle fluxes detected near the ionopause also exhibit higher plasma temperatures and show a tendency to move towards the nightside hemisphere. The observation of high plasma temperatures in the inner ionosheath indicates that the interaction of the solar wind with the Venus ionospheric/exospheric material is dominated by dissipative phenomena, and that its entry into the wake is due to local thermal expansion processes.  相似文献   

5.
We describe a tabular specification model of the density and temperature of ions and electrons at geosynchronous orbit as a function of magnetic local time and solar wind parameters. This model can be used to provide boundary conditions for numerical ring current models. Unlike previous specification models of geosynchronous plasma moments, this model is parameterized by upstream solar wind conditions. We find that solar wind parameters are a better predictor of geosynchronous ion density than magnetospheric indices, and as upstream parameters they are often more appropriate as model inputs since they causally precede the model outputs. Of the upstream parameters that were tested, the best predictors of geosynchronous conditions were the solar wind flow pressure and the magnitude and Z-component of the interplanetary magnetic field.  相似文献   

6.
We report the first 3+1 dimensional model development for energetic atomic oxygen ions in the Earth's radiation belts. Energetic Oxygen ions cans be supplied to the Earth's Inner magnetosphere from the sun (as a component of solar wind and solar energetic particles), from anomalous cosmic rays, and from acceleration processes acting on ionospheric atomic oxygen ions. We have built a multi-dimensional oxygen ion model in the following free parameters: geomagnetic L-shell, the magnetic moment, the second adiabatic invariant, and the discrete charge state number. Quiet time, steady state oxygen ion distributions have been obtained numerically from an assumed outer radiation zone boundary condition at L=7, average values of the radial diffusion coefficients, and standard values for the exospheric neutral densities due to the MSIS-86 upper atmosphere and exosphere neutral thermal particle density model. Average distributions of free electrons in the plasmasphere were also assumed with a mean plasmapause location just beyond L=4. We included the six lowest ionic charge states of atomic oxygen (16O) based on an existing charge exchange cross section compilation by Spjeldvik and Fritz (1978). Computed oxygen ion distributions include the resulting equilibrium structure of energy oxygen ions between 10 KeV and 100 MeV.  相似文献   

7.
The shape of the dayside Venus ionopause, and its dependence on solar wind parameters, is examined using Pioneer Venus Orbiter field and particle data. The ionopause is defined here as the altitude of pressure equality between magnetosheath magnetic pressure and ionospheric thermal pressure; its typical altitudes range from ~300 km near the subsolar point to ~900 km near the terminator. A strong correlation between ionopause altitude and magnetosheath magnetic pressure is demonstrated; correlation between magnetic pressure and the normally incident component of solar wind dynamic pressure is also evident. The data support the hypothesis of control of the ionopause altitude by solar wind dynamic pressure, manifested in the sheath as magnetic pressure. The presence of large scale magnetic fields in the ionosphere is observed primarily when dynamic pressure is high and the ionopause is low.  相似文献   

8.
In this paper we study the charging process of small grain particles by anisotropic multi-component solar wind plasmas (electrons, protons and heavy ions), versus two-component (electron/proton) plasmas. We are focusing attention on the important characteristics of the charging process, namely the charging time, floating potential and current content as functions of plasma parameters such as He++/H+ (α/p) number density and Tα/Tp temperature ratios of alpha particles to protons, as well as plasma streaming velocity v0. Measured statistical properties of solar wind plasma parameters at 1 AU show considerable variations in α/p-temperature ratios from 1 to 10, in α/p-number density ratio from 0.01 to 0.35, as well as in values of streaming velocity v0 from 200 km/s to 1000 km/s and more. Periods of these variations could last for several days each, leading to significant variability in the charging process, according to newly derived general analytical expressions. Numerical calculations performed for protons/alphas plasmas showed large disparity in the charging characteristics. For example, in anisotropic plasma, grain charging time varies up to 90% depending on α/p-particles temperature and number density ratios, whereas changes in floating potential are up to 40%. In contrast, in isotropic plasma, charging characteristic for grains do not change very much for the same plasma parameters variations, with charging time varying about 12% and floating potential only varying about 4%. It is also shown that in highly anisotropic plasma, with all ballistic electrons and ions, dust grains could not hold their charges, and characteristic discharged time is calculated. We note that the analysis is equally applicable to any sized body immersed in solar wind plasma.  相似文献   

9.
This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.  相似文献   

10.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   

11.
The Venus ionosphere is influenced by variations in both solar EUV flux and solar wind conditions. On the dayside the location of the topside of the ionosphere, the ionopause, is controlled by solar wind dynamic pressure. Within the dayside ionosphere, however, electron density is affected mainly by solar EUV variations, and is relatively unaffected by solar wind variations and associated magnetic fields induced within the ionosphere. The existence of a substantial nightside ionosphere of Venus is thought to be due to the rapid nightward transport of dayside ionospheric plasma across the terminator. Typical solar wind conditions do not strongly affect this transport and consequently have little direct influence on nightside ionospheric conditions, except on occasions of extremely high solar wind dynamic pressure. However, both nightside electron density and temperature are affected by the presence of magnetic field, as in the case of ionospheric holes.  相似文献   

12.
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity.  相似文献   

13.
As an initial effort to study the evolution of the Venus atmosphere, the influence of the solar wind density and the interplanetary magnetic field (IMF) x component (the x-axis points from Venus towards the Sun) on the O+ ion escape rate from Venus is investigated using a three-dimensional quasi-neutral hybrid (HYB-Venus) model. The HYB-Venus model is first applied to a case of the high-density (100 cm−3) solar wind interaction with Venus selected from the Pioneer Venus Orbiter observations to demonstrate its capability for the study. Two sets of simulations with a wide range of solar wind densities and different IMF x components are then performed. It is found that the O+ ion escape rate increases with increasing solar wind density. The O+ ion escape rate saturates when the solar wind density becomes high (above 100 cm−3). The results also suggest that the IMF x component enhances the O+ ion escape rate, given a fixed IMF component perpendicular to the x-axis. Finally, the results imply a higher ion loss rate for early-Venus, when solar conditions were dramatically different.  相似文献   

14.
North–South asymmetry in the cosmic ray fluxes as resulted from the long-term balloon measurements in the northern and southern polar stratosphere does not agree with that found from the neutron monitor data. In order to reveal possible sources of the observed asymmetry, selected interplanetary parameters were examined. North–South asymmetry relative to the heliospheric neutral sheet was considered for solar wind velocity, plasma density and some other solar plasma parameters. It is shown that North–South asymmetry of the solar wind velocity and plasma density depends on the Earth’s heliolatitude and the phase of the 11-year solar activity cycle. This may be relevant to the results of cosmic ray measurements in the stratosphere.  相似文献   

15.
When the solar wind dynamic pressure is high, the Venus ionosphere usually contains a belt of steady magnetic field at the very lowest altitudes to which Pioneer Venus probes. The current layer that flows on the high altitude side of this low altitude belt is centered at an altitude which ranges from 170 to 190 km with a most probable altitude of 182 km. This altitude is independent of solar zenith angle and hence the current system is flowing horizontally rather than vertically as proposed by Cloutier and co-workers. The lower edge of the magnetic belt was probed only on the lowest altitude passes of Pioneer Venus. This boundary is even more stable in location. The belt has decayed to 90% of its maximum strength usually by 162 km and to 50% of its maximum strength by 155 km. We interpret these data to indicate that the observed magnetic structure of the Venus ionosphere is a product of temporal evolution rather than of spacecraft motion through a spatially varying static structure.  相似文献   

16.
This study presents comparisons between the Pioneer Venus Orbiter (PVO) magnetometer (OMAG) observations and the HYB-Venus hybrid simulation code. The comparisons are made near periapsides of four PVO orbits using the full resolution PVO/OMAG data. Also, the statistics of the solar wind and interplanetary magnetic field (IMF) conditions at Venus are studied using the PVO interplanetary dataset. The statistics include the histograms and the probability density maps of the selected upstream parameters. The confidence intervals derived from the upstream statistics demonstrate the nominal simulation input parameter space. Moreover, the probability density maps give the dependencies between the upstream parameters. The comparisons between the simulation code and the data along the spacecraft trajectory show that the basic, large scale, trends seen in the magnetic field can be understood by the current simulation runs. The discrepancies between the simulation and the data were found to arise at low altitudes close to the planetary ionosphere in the region which cannot be resolved in detail by the grid size of the runs.  相似文献   

17.
本文数值研究了二维磁流体动力学平衡基态下开场区日面冷物质径向喷射所引起的日冕动力学响应。结果表明:(1)在高密度环前方有一弱扰动区近似以Alfvén速度向外传播;(2)高密度环前缘移动速度随着径向距离而增加, 其增加值近似为局地太阳风速度;(3)高密度环中等离子体的最大径向速度约在4个太阳半径处趋于局地逃逸速度;(4)对于强开放场, 环形结构在θ方向上没有明显的扩张。这些结果可以更好地解释伴随有日珥的日冕物质抛射事件。   相似文献   

18.
This review of the plasma regime sampled by the encounter of the International Cometary Explorer spacecraft (ICE) with the comet Giacobini-Zinner, discusses the shock, or bow wave, ion pickup, ionization mechanisms, and the cometary plasma tail.

The observations are consistent with the existence of a weak shock, which may be pulsating, but do not exclude the suggestion by Wallis and Dryer that the shock, though present around the sub-solar point, is in process of decaying to a wave on the flanks.

Pickup of cometary ions provokes, by means of several mechanisms, ion cyclotron, mirror, beam and electrostatic instabilities which cause strong turbulence in the inner coma, as indicated in the power spectra of the magnetic field in the coma and the surrounding volume. Heavy mass loading and consequent slowing down of the solar wind is observed. Acceleration of ions by a stochastic mechanism is indicated.

Ionization of cometary neutrals occurs principally by photoionization and charge exchange. Alfvens critical velocity mechanism, likely operates only in the inner coma not visited by ICE. A steep increase of nearly two orders of magnitude in electron density occurs in the tail, where electron velocity distributions show evidence of entry of electrons from the solar wind. The turbulence there is damped by the high ion density and low temperature.

In general, the vicinity of the comet is filled with plasma phenomena and a rich variety of corresponding atomic and molecular processes can be studied there. Comparison between the ICE, Giotto, and Vega observations forms a most valuable future study.  相似文献   


19.
The results of cross-correlation analysis between electrons fluxes (with energies of > 0.6MeV, > 2.0 MeV and > 4.0MeV), geomagnetic indices and solar wind parameters are shown in the paper. It is determined that the electron fluxes are controlled not only by the geomagnetic indices, but also by the solar wind parameters, and the solar wind velocity demonstrates the best relation with the electron fluxes. Numerical value of the relation efficiency of external parameters with the highly energetic electrons fluxes shows a periodicity. It is presented here the preliminary results of daily averaged electrons fluxes forecast for a day ahead on the basis of the model of neuron networks.  相似文献   

20.
Physical properties of the Venus ionosphere obtained by experiments on the US Pioneer Venus and the Soviet Venera missions are presented in the form of models suitable for inclusion in the Venus International Reference Atmosphere. The models comprise electron density (from 120 km), electron and ion temperatures, and relative ion abundance in the altitude range from 150 km to 1000 km for solar zenith angles from 0° to 180°. In addition, information on ion transport velocities, ionopause altitudes, and magnetic field characteristics of the Venus ionosphere, are presented in tabular or graphical form. Also discussed is the solar control of the physical properties of the Venus ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号