首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current state of space life sciences knowledge and research is described. Findings about the health of astronauts in space are reviewed and a plea is made by some former astronauts to increase the amount of research being conducted. Longitudinal studies of the long term effects of space travel, especially radiation exposure, are being conducted and have yet to show any ill effects. Current research focuses are discussed, including Neurolab, an upcoming shuttle mission devoted to neurological and vestibular research. Experiment and spacecraft hardware is discussed, as are future directions in research. Partnership with Russian space life sciences investigators is also underway.  相似文献   

2.
There are three distinct energy ranges within the broad spectrum of gamma-ray astronomy, low energy (which in turn is subdivided), high energy, and very high and ultra-high energy. Each has its own unique type of instrumentation. Only in the very high-energy range do the telescopes bear any resemblence to optical telescopes; the rest appear more like instrumentation for high-energy physics. The low- and high-energy ranges are now primarly dependent on spaceflight, although some balloon altitude research is still being accomplished. Satellites planned to be launched in the next two years will carry telescopes with considerably more capability than those previously flown in space. In the very high and ultra-high energy realm, large ground based systems are used to detect the secondary radiation from interactions of the gamma radiation with the air. In all cases, software and data analysis are becoming increasingly important aspects of the subject as the data become ever greater and more complex. Beyond the telescopes to be flown in space or installed on the ground soon, instrumentation, taking advantage of new detector techniques which have come into being or older ones which now seem capable of being adapted to space, are being developed for the more distant future.  相似文献   

3.
Large solar flares are often accompanied by both emissions of high-energy quanta and particles. The emissions such as gamma-ray and hard X-ray photons are generated due to the interaction of high-energy nuclei and electrons with gases ambient in the flare regions and the solar atmosphere. Nonthermal radio emissions of wide frequency band are produced from energetic electrons while being decelerated by the action of plasmas and magnetic fields ambient in the flare site and its neighboring region. To understand the emission mechanism of these high-energy quanta on the Sun, it is, therefore, necessary to find the acceleration mechanism for both nuclei and electrons, which begins almost simultaneously with the onset of solar flares.A part of the accelerated nuclei and electrons are later released from the solar atmosphere into the outer space and eventually lost from the space of the solar system. Their behavior in the interplanetary space is considered to study the large-scale structure of plasmas and magnetic fields in this space.The observations and studies of high-energy phenomena on the Sun are thus thought of as giving some crucial hint important to understand the nature of various high-energy phenomena being currently observed in the Universe.  相似文献   

4.
Safe, reliable, and low cost space-based navigation is being provided with embedded INS/GPS systems such as the space integrated GPS/INS (SIGI). The SIGI is being used for various space vehicle applications such as launch vehicles, orbital vehicles, and re-entry vehicles. This paper describes current space vehicle navigation capabilities. The SIGI is being enhanced to provide additions to these existing capabilities with such items as higher processing and a commercial-off-the-shelf operating system. This will allow hosting of various software applications such as advanced navigation functions, flight control, guidance and vehicle management algorithms. The SIGI can host redundancy management functions by incorporating a cross channel data link card (CCDL) using a high speed firewire bus. The SIGI can then be used as a redundancy management platform which has application to current space vehicle avionics topologies incorporating distributed processing architectures  相似文献   

5.
Ruoff CF 《Aerospace America》1989,27(8):38-41, 46
This article describes the use of robots to perform work in space. In particular, telerobotics, which uses human operators to control the movement and operation of the robots, are explored. The relationship between the human operator and the robot is very complex but these systems are being used to explore planetary surfaces and will also be used in the construction of the space station. Research being conducted at NASA facilities is described, providing a picture of the future of space robotics.  相似文献   

6.
Parks College of Engineering and Aviation of Saint Louis University [1i] has a tradition of offering an outstanding aerospace engineering education to prepare students at the undergraduate and graduate level for careers in commercial aviation, defense systems, and space systems fields. Courses are offered across the engineering spectrum (aerospace, electrical and computer engineering, and physics departments) ranging from an introduction to aerospace engineering to spacecraft design, spacecraft communications, and space physics. Students participate in courses that include orbital mechanics, space dynamics, spacecraft engineering, and space systems. Senior capstone project work is also included. A separate Astronautics Engineering track as well as a Minor in Space Systems Engineering for non-aerospace engineering students is currently being developed. A, number of student-driven space systems projects are in process that involve design, development, and test of small satellites similar to those recently highlighted in the March 2009 Systems article entitled The First one Hundred University-Class Spacecraft 1981 - 2008. Reference [4] identifies student spacecraft launched over the past 27 years.  相似文献   

7.
Tetrahedral Robotics for Space Exploration   总被引:2,自引:0,他引:2  
A reconfigurable space filling robotic architecture has a wide range of possible applications. One of the more intriguing possibilities is mobility in very irregular and otherwise impassable terrain. NASA Goddard Space Flight Center is developing the third generation of its addressable reconfigurable technology (ART) tetrahedral robotics architecture. An ART-based variable geometry truss consisting of 12 tetrahedral elements made from 26 smart struts on a wireless network has been developed. The primary goal of this development is the demonstration of a new kind of robotic mobility that can provide access and articulation that complement existing capabilities. An initial set of gaits and other behaviors are being tested, and accommodations for payloads such as sensor and telemetry packages are being studied. Herein, we describe our experience with the ART tetrahedral robotics architecture and the improvements implemented in the third generation of this technology. Applications of these robots to space exploration and the tradeoffs involved with this architecture will be discussed.  相似文献   

8.
本文从相对论的角度,论述了时间与空间的物质性,即时间与空间是物质的属性,它们依赖于物质的存在而存在,它们的性质随物质的运动状态改变而改变。时间不是独立于物质和物质的运动之外而永恒的流逝。空间也不是与物质和物质的运动无关而无限的延伸。  相似文献   

9.
This paper presents trade studies that address the use of the thermionic/AMTEC cell-a cascaded, high efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint, the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as high as 35-40% such a cascade offers the following perceived benefits: Survivability-capable of operation in the Van Allen belts; Simplicity-static conversion, no moving parts; Long lifetime-no inherent life-limiting mechanisms identified; Technology readiness-Large thermionic database; AMTEC efficiencies of 18% currently being demonstrated, with more growth potential available; and Technology growth-applicable to both solar thermal and reactor-based nuclear space power systems. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems  相似文献   

10.
The author suggests that the problem with the space program in the 1990s is that there are few short term benefits that the public can directly relate to and no long term vision that will motivate them. Recent surveys have shown that public would support an expanded space program if they understood the specific short term purpose that provides benefits coupled to a longer term vision. The author discusses a proposed space program that has a 100 Year Vision and a specific beneficial near term purpose. The specific near term purpose is to return to the Moon and develop He for nuclear fusion power on Earth, and then expand into the Solar System and eventually to the nearby stars with the purpose of finding new life as a long term vision. This is how the author sees it unfolding-in three Epochs. Epoch I is proposed as the minimum near term space program. Space Station Freedom in near-Earth orbit being serviced by the Space Shuttle, the National Aerospace Plane and the Single-Stage-To-Orbit Vehicle. Just above Freedom is an Earth Observing System Satellite that, as part of Mission to Planet Earth, will monitor and analyze our planet's ecological systems. There are also a great many scientific, defense and launch systems whose technologies will evolve to play critical roles in future epochs  相似文献   

11.
This paper describes the current status of the COLUMBUS Programme, Europe's contribution to the U.S. Space Station, which is being studied under contract to the European Space Agency. Twelve European nations are involved in and are contributing to this new space undertaking. The elements of the COLUMBUS Space Segment presently being considered by ESA are a Pressurized Laboratory Module (4 segment), permanently attached to the U.S. Space Station, dedicated to materials science, fluid physics and compatible life sciences, and a Polar Platform, configured to accommodate Earth observation, meteorology, communications and space science payloads. The reference launch vehicles are the Space Shuttle for the attached Module and Ariane 5 for the Polar Platform. The more recently added COLUMBUS flight configuration, the Man-Tended Free Flyer (MTFF), consists of a combination of two programme elements, the Resource Module and a 2-segment Pressurized Module. It is designed to provide all required resources and services to the various payloads in a continuous microgravity environment to perform material science, fluid physics and compatible life sciences experiments. The MTFF is carried into orbit by the European launcher Ariane 5. As an option, studies of an enhanced ground based EURECA carrier as a small co-orbiting platform, launched by the Space Shuttle, will be initiated. The primary function would be to accommodate space science and/or micro-g payloads. These EURECA studies are performed currently outside the COLUMBUS programme scope, and this option is therefore not addressed in detail in this paper.  相似文献   

12.
The Solar Terrestrial Relations Observatory (STEREO) is primarily a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. The data which will be telemetered down in the Space Weather Beacon is also summarized here. Some of the lessons learned from integrating other NASA missions into the forecast center are presented. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.  相似文献   

13.
Guo  Jian-shan  Shang  She-ping  Shi  Jiankui  Zhang  Manlian  Luo  Xigui  Zheng  Hong 《Space Science Reviews》2003,107(1-2):229-250
Observation, specification and prediction of ionospheric weather are the key scientific pursuits of space physicists, which largely based on an optimal assimilation system. The optimal assimilation system, or commonly called data assimilation system, consists of dynamic process, observation system and optimal estimation procedure. We attempt to give a complete framework in this paper under which the data assimilation procedure carries through. We discuss some crucial issues of data assimilation as follows: modeling a dynamic system for ionospheric weather; state estimation for static or steady system in sense of optimization and likelihood; state and its uncertainty estimation for dynamic process. Meanwhile we also discuss briefly the observability of an observation system; system parameter identification. Some data assimilation procedures existed at present are reviewed in the framework of this paper. As an example, a second order dynamic system is discussed in more detail to illustrate the specific optimal assimilation procedure, ranging from modeling the system, state and its uncertainty calculation, to the quantitatively integration of dynamic law, measurement to significantly reduce the estimation error. The analysis shows that the optimal assimilation model, with mathematical core of optimal estimation, differs from the theoretical, empirical and semi-empirical models in assimilating measured data, being constrained by physical law and being optimized respectively. The data assimilation technique, due to its optimization and integration feature, could obtain better accurate results than those obtained by dynamic process, measurement or their statistical analysis alone. The model based on optimal assimilation meets well with the criterion of the model or algorithm assessment by ‘space weather metrics’. More attention for optimal assimilation procedure creation should be paid to transition matrix finding, which is usually not easy for practical space weather system. High performance computing hardware and software studies should be promoted further so as to meet the requirement of large storage and extensive computation in the optimal estimation. The discussion in this paper is appropriate for the static or steady state or transition process of dynamic system. Many phenomena in space environment are unstable and chaos. So space environment study should include and integrate these two branches of learning. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Smith  Howard A. 《Space Science Reviews》2003,105(1-2):493-505
Astronomy and space science, including their associated basic research activities, enjoy broad popular backing. People generally support them, and say that they follow their results with interest. This article summarizes some of the detailed results of public surveys in the United States, focusing on popular opinions and attitudes, and the somewhat paradoxical finding that despite being interested and supportive, people are often ignorant about the basic facts. I explore some of the reasons for the popularity of space science, and suggest ways of justifying space science research in the broader context of science research. I argue that vigorous and innovative education and outreach programs are important, and can be made even more effective. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The prime purpose of this paper is to describe the advances in Zener diode transient suppressors for ground vehicle and aircraft application. The evolution of the transient suppressor development for the U.S. Army is presented with emphasis on space, weight, and cost considerations. Improvements including an electronic thermal switch and a "battle override" switch are also described. A futuristic transient suppressor of modular design developed for use as an integral part of the equipment being protected is functionally described.  相似文献   

16.
New approaches are being studied for real-time interaction, and related supporting processes, with spacecraft and instruments in deep space. Spacecraft are evolving, improving in many ways, and generally becoming more robust. Operations is changing also, and will be more automated in the future. However, there is a challenge. Deep space missions are not all alike. The operations phases of discovery and exploration are an extension of the research that creates the mission; they are the time of obtaining results. This examines the historical role of flight operations and its evolving processes to develop an understanding of the operational methods that will be effective in the future. It takes people, equipment, software, space, and connectivity for operations success. A balance has to be struck between improving technology, gaining knowledge, automation, and realistic expectations. Finally, the recommended methods to gain efficiency in operations are system-wide services and shared resources. These common processes will meet the challenge of varied missions.  相似文献   

17.
All aerospace vehicles have the common constraint of limited space for the electronic systems. The challenge has always been how to pack effective electronic systems into the space available. Higher levels of electronic integration can give a competitive advantage; for example, by providing extra channels in a communications satellite thereby increasing revenue to the operator. Today's deep sub-micron manufacturing processes for integrated electronics offer an opportunity for a step change for electronic functionality that can be packaged in a given space. This technology makes possible, for the first time, a true system-on-chip approach to electronic systems, which is already being exploited by the commercial sector in products such as the mobile telephone  相似文献   

18.
Data relay satellites are being developed to provide real-time data links between research satellites in low earth orbits and central data acquisition and processing facilities. Frequency assignments for data relay satellite links will be made in bands allocated internationally to the space research service. One of the bands which will be used lies between 14.5 and 15.35 GHz, where the space research service has had a frequency allocation as a secondary service since 1971. During the General World Administrative Radio Conference of the International Telecommunication Union, held in Geneva in 1979, a primary frequency allocation was made in the band 14.5-14.8 GHz to the fixed-satellite service, specifically for use by earth-to-space links of the broadcasting satellite service. The feasibility of shared band operation is evaluated between data relay satellite uplinks and broadcasting-satellite feeder links in the band 14.5-14.8 GHz. Relationships for predicting interference power levels are formulated, as functions of satellite separation and of earth station separation. Tradeoffs between satellite separation angle and earth station separation are explored, and conclusions are drawn regarding the feasibility of band sharing. Co-channel operation is demonstrated to be technically feasible for typical systems, provided appropriate separations are maintained.  相似文献   

19.
The Leasecraft system is an innovative means to provide a permanent mobile platform in low Earth orbit and the related launch, integration, test, operation, and in-orbit servicing for payloads of industrial and government users. The Leasecraft system is being funded and developed by Fairchild Industries and furthers the industrialization of space with its significant business potential. The technology and techniques underlying this venture are derived from the shuttle compatible multimission modular spacecraft (presently used for the NASA solar maximum mission and Landsat-D/D' mission) and the upcoming demonstration of shuttle repair to be performed on the solar maximum satellite in the first quarter of 1984. Leasecraft can be identified as a system, comprising a low orbit space platform, an operations control center, user accommodations, and services such as payload interfaces, documentation, and ground support equipment and procedures. The combination of these elements facilitates the use of the space environment by both the space and nonspace oriented user. Early potential applications of Leasecraft include the processing of pharmaceuticals and materials, satellite-aided search and rescue, data collection, and support of NASA's astrophysics programs. Initial assessments made concerning the benefits to users and the cost of providing these benefits indicates that Leasecraft can provide needed services at very competitive rates. The leasing arrangement is cost effective as compared with present spacecraft platform development and cost assessment techniques.  相似文献   

20.
Background on the space exploration program is discussed, and the currently identified NASA exploration missions are contrasted with the missions that were being planned a year ago. Developments in high-efficiency dynamic radioisotope power systems are discussed: and Brayton and Stirling power conversion cycles are compared for the missions planned for the next decade. Issues related to the use of high-efficiency radioisotope (HER) power systems are identified. It is noted that HER power systems are approximately three times as efficient as current radioisotope thermoelectric generators(RTGs) and are therefore significantly cheaper. Additionally, the world's supply of 238Pu is extremely limited. Currently discussed missions would cut deeply into this supply if powered by RTGs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号