首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of this study was to determine whether fluid-electrolyte changes, which are developed during prolonged hypokinesia (decreased number of km per day), can be prevented or minimized with the use of a daily intake of fluid and salt supplementation (FSS). The experiments on hypokinesia (HK) were performed for 364 days on 18 endurance-trained male volunteers in the age range of 21-23 years, with an average maximum oxygen uptake of 67 ml kg-1. All volunteers were divided into three equal groups: six volunteers were placed on a continuous regime of exercise of 14.0 km day-1 and served as control subjects. Six volunteers were subjected to continuous HK without FSS and were considered as the unsupplemented hypokinetic subjects (UHS). The remaining volunteers were under continuous HK and FSS and were considered as the supplemented hypokinetic subjects (SHS). For the simulation of the hypokinetic effect, the UHS and SHS groups were kept continuously under an average of 2.7 km day-1 for the duration of the experiment. Prior to exposure to HK, all volunteers were on the same exercise regime as the controls. During the pre-experimental period of 60 days and during the post-experimental period, urinary excretion of electrolytes and concentrations of sodium, potassium, calcium and magnesium in serum as well as serum osmolality were determined. An increased renal excretion of fluid and electrolytes and a decreased serum electrolyte concentration were observed in the SHS, while a decreased renal excretion of fluid and electrolytes and an increased serum electrolyte concentration were observed in the UHS, during the initial stages of the post-hypokinetic period. By day 30 of the post-hypokinetic period these changes were reverted back to the control levels. We concluded that chronic hyperhydration may be used to attenuate urinary and serum electrolyte changes in endurance-trained volunteers after exposure to prolonged HK.  相似文献   

2.
It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.  相似文献   

3.
Costas B. Tsiamis   《Acta Astronautica》2008,62(10-11):617-622
The physiological and biochemical systems that regulate the level of each electrolyte in blood and other endogenous fluids, and the balance between the consumption and loss of fluid and electrolytes and the total fluid and electrolyte content of the body are significantly affected during hypokinesia (HK; diminished movement). Among the known effects of HK, the fluid and electrolyte deficiency has drawn a great interest due to the higher fluid and electrolyte deficiency with higher than lower fluid and electrolyte consumption. The impossibility of the body to use fluid and electrolytes, after the fluid and electrolyte deficiency has been established, has drawn the greatest interest. The fluid shifting to the thoracic region and the daily body rehydration are considered as the most effective methods to counteract fluid and electrolyte changes. To this end, the objective of this review was to report some of the findings in the fluid and electrolyte deficiency and fluid and electrolyte loss with fluid and electrolyte deficiency during prolonged HK.  相似文献   

4.
The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day, prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could not be reversed by PE or rehydration in individuals subjected to prolonged restriction of motor activity.  相似文献   

5.
Body hydration decreases significantly during hypokinesia (HK) (diminished movement), but little is known about the effect of fluid and salt supplements (FSS) on body hydration during HK. The aim of this study was to measure the effect of FSS on body hydration during HK. Studies were done during 30 days pre HK period and 364 days HK period. Thirty male athletes aged 24.5 +/- 6.6 yr were chosen as subjects. They were equally divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS) and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km day-1. The SHKS group took daily 30 ml of water/kg body weight and 0.1 g of sodium chloride (NaCl)/kg body weight. Control subjects experienced no changes in their professional training and routine daily activities. Plasma volume (PV), urinary and plasma sodium (Na) and potassium (K), plasma osmolality, plasma protein, whole blood hemoglobin (Hb) and hematocrit (Hct), plasma renin activity (PRA) plasma aldosterone (PA) levels, physical characteristics, food and fluid intakes were measured. Plasma osmolality, plasma protein, urinary and plasma Na and K, whole blood Hct and Hb, PRA and PA levels decreased significantly (p < or = 0.01), while PV and body weight increased significantly (p < or = 0.01) in the SHKS group when compared with the UHKS group and did not change when compared with the UACS group. Plasma osmolality, plasma protein, urinary and plasma Na and K, PRA and PA, whole blood Hb and Hct levels increased significantly (p < or = 0.01), while PV body weight, food and fluid intakes decreased significantly (p < or = 0.01) in UHKS group when compared with the SHKS and UACS groups. The measured parameters did not change in the UACS group when compared with their baseline control values. It was shown that during HK body hydration decreased significantly, while during HK and FSS body hydration increased significantly. It was concluded that daily intake of FSS prevents the decrease of PV and blunts the increase of activity of the PRA and PA during prolonged HK.  相似文献   

6.
The aim of this study was to evaluate the effect of different body positions on renal excretion of fluid and electrolytes after exposure to 364 days of decreased number of steps per day (hypokinesia, HK). The studies were performed on 18 endurance trained male volunteers aged 19-24 years who had an average of VO2max 67 ml/kg body/min. All volunteers were divided into three equal groups: the 1st group subjected to 12 h orthostatic position (OP) and 12 h clinostatic position (CP)/day, the 2nd group exposed to 8 h orthostatic position and 14 h clinostatic position/day, and the 3rd group submitted to 10 h orthostatic position and 16 h clinostatic position/day for 364 days. For the simulation of the hypokinetic effect all volunteers were kept under an average of 3000 steps/day for 364 days. Diuresis and the concentrations of sodium, potassium, chloride, calcium and magnesium as well as excretion of creatine were determined in 24-h urine samples. By the end of the hypokinetic period all volunteers, regardless of their body position during HK, manifested a significant increase in renal excretion of fluid and electrolytes as compared to prehypokinetic period values. It was concluded that prolonged restriction of motor activity induced a significant increase in renal excretion of fluid and electrolytes in endurance trained subjects regardless to their body position and duration thereof per day.  相似文献   

7.
It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19-24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7-9% and 5-7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P < 0.01 in both groups of men. A comparison between bone density changes in the control and experimental groups of men failed to demonstrate significant differences. It was concluded that the level of mineralization of bone tissues decreased under hypokinesia and physical exercise with calcium supplements.  相似文献   

8.
Hypokinesia (decreased motor activity) induces insignificant bone mineral changes. The aim of this study was to measure mineralization, density, and also electrolyte content in the femur of rats during prolonged hypokinesia (HK). Studies were done on 144 male Wistar rats (370-390 g) during 15 days period of pre-HK and 90 days period of HK. Rats were equally divided into two groups: hypokinetic rats (HKR) and vivarium control (VCR). The HKR group of rats was kept in small individual cages. Femur mineralization density, ash mineral content, calcium (Ca) and phosphate (P) content, and plasma Ca and P concentration were measured. In the HKR group body weight, femur mineralization, density, ash mineral content, Ca and P concentration decreased significantly (p < or = 0.01) while plasma Ca and P concentration increased significantly (p < or = 0.01) when compared with the VCR group. The measured parameters did not change significantly in the VCR group when compared with the baseline control values. It was concluded that prolonged HK induces a significant reduction in electrolyte concentration accompanied by decreased mineralization, density, and ash mineral content of the femur of rats.  相似文献   

9.
The objective of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on bone mineralization in physically healthy male volunteers after exposure to hypokinesia (decreased number of steps taken/day) over a period of 364 days. The studies were performed after exposure to 364 days of hypokinesia (HK) on 18 physically healthy male volunteers who had an average VO2max of 65 ml/kg/min and were aged between 19 and 24 years. For the simulation of the hypokinetic effect the volunteers were kept under an average of 1000 steps/day. The subjects were divided into three equal groups of 6: 6 underwent a normal ambulatory life (control group), 6 were placed under HK (hypokinetic group) and the remaining 6 were subjected to HK and consumed a daily FSS (water 26 ml/kg body wt and NaCl 0.10 mg/kg body wt) (hyperhydrated group). The density of the ulnar, radius, tibia, fibular, lumbar vertebrae and calcenous was measured. Calcium and phosphorus changes, plasma volume, blood pressure and body weight were determined. Calcium content in the examined skeletal bones decreased more in the hypokinetic subjects than in the hyperhydrated subjects. Urinary calcium and phosphorus losses were more pronounced in hypokinetic than hyperhydrated subjects. Plasma volume and body weight increased in hyperhydrated subjects, while it decreased in hypokinetic subjects. It was concluded that a daily intake of FSS may be used to neutralize bone demineralization in physically healthy subjects during prolonged restriction of motor activity.  相似文献   

10.
During the Altair MIR' 93 mission we studied several parameters involved in blood volume regulation. The experiment was done on two cosmonauts before (B-60, B-30), during (D6, D12, D18 for French and D7, D12, D17 for Russian) and after the flight (R+1, R+3 and R+7). Space flight durations were different for two cosmonauts: for the Russian the flight duration was 198 days and for the French 21 days. On board the MIR station only urinary (volume and electrolytes, atrial natriuretic peptide (ANP), cyclic guanosine monophosphate (cGMP) and catecholamines) and salivary (cGMP and cortisol) samples were collected, centrifuged and stored in freezer. Lithium was used as a tracer to know exactly the 24 h urine output (CNES urine collection Kit). Before and after flight, blood was drawn with an epicite needle and vacutainer system for hormonal assays (renin, antidiuretic hormone, cGMP, ANP and aldosterone) in two positions: after 30 min rest in upright seated position and after 90 min of supine position. Salivary samples were collected simultaneously. During flight a decrease of diuresis and ANP and an increase of osmolality were found. No modifications of hematocrit, but an increase of salivary cGMP and cortisol were also observed. The decrease of urinary ANP is in favor of hypovolemia as described in previous flights. The postflight examinations revealed changes in fluid-electrolyte metabolism which indicate a hypohydration status and a stimulation of hormonal system responsible for water and electrolyte retention in order to readapt to the normal gravity.  相似文献   

11.
The objective of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on the hemoglobin content of endurance trained athletes during hypokinesia (decreased number of steps from 10,000 to 3000 steps per day). The studies were performed on 30 long-distance runners who had a VO2max average of 66 ml kg-1 min-1 and were in the age range of 19-24 years. Prior to their exposure to hypokinesia (HK) of 364 days, all volunteers were on an average of 10,000 steps per day. All volunteers were divided into three equal groups: the first group underwent normal ambulatory life (control subjects), the second group was kept under continuous restriction of motor activity (hypokinetic subjects), and the third group was placed under continuous restriction of motor activity and consumed 26 ml water kg-1 body weight daily and 0.1 g sodium chloride kg-1 body weight in the form of supplementation (hyperhydrated subjects). For simulation of the hypokinetic effect, the number of steps taken per day by the second and third groups of volunteers was restricted to an average of 3000. During the hypokinetic period we determined reticulocytes (Rt), hemoglobin (Hb), hematocrit (Hct), plasma volume (PV), red blood cell (RBC) mass and VO2max. In hyperhydrated volunteers the content of Hb and Hct decreased significantly, while PV, RBC mass and Rt count increased significantly. In hypokinetic volunteers Hb and Hct increased, while PV, RBC and Rt decreased significantly. It was concluded that chronic hyperhydration may be used to attentuate an increase in the Hb content of physically conditioned subjects during prolonged restriction of motor activity.  相似文献   

12.
Ten cosmonauts, who performed 30-175-day space flights aboard Salyut-4 and Salyut-6, and over 60 test subjects who were exposed to bed rest of up to 182 days and immersion of up to 56 days, were examined. The renal excretion of potassium and calcium increased, reaching a maximum by the 4-6th weeks in prolonged space flights and simulation studies. During the load tests with potassium and calcium salt, excretion postflight was much higher than preflight. During potassium chloride load tests a positive correlation between the blood content of aldosterone and potassium excretion existed, whereas during calcium lactate load tests an increased calcium excretion was accompanied by a decrease in blood parathyroid hormone concentration. The most probable cause of the negative ion balance in weightlessness is the reduced capacity of tissues to retain electrolytes due to the decreased ion pool capacity. Different exercises have been shown to exert a beneficial effect on electrolyte metabolism.  相似文献   

13.
Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR.

Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight.

Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly (p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly (p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly (p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly (p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values.

The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.  相似文献   


14.
Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.  相似文献   

15.
The objective of this investigation was to assess the effect of a daily intake of fluid and salt supplementation on biochemical and hormonal changes in endurance trained volunteers aged 19-24 yrs during 30-day bed rest and during 15 days of post bed rest period. The studies were performed on 30 long distance runners aged 19-24 yrs who had a peak oxygen uptake of 66 ml/kg/min and had taken 14.5 km/day on average prior to their participation in the study. The volunteers were divided into three groups: the volunteers in the first group were under normal ambulatory conditions (control subjects); the second group subjected to bed rest alone unsupplemented (bed rested volunteers); the third group was submitted to bed rest and consumed daily 30 ml water/kg bodyweight and 0.1 g of sodium chloride (NaCl)/kg body weight (supplemented bed rested volunteers). The second and third groups of volunteers were kept under a rigorous bed rest regime for 30 days. During the pre bed rest period of 15 days, during the bed rest period of 30 days and during the post bed rest period of 15 days cyclic adenosine monophosphate, cyclic guanosine monophosphate, prostaglandins of pressor, prostaglandins depressor groups, renin activity in plasma and aldosterone in plasma and in urine were determined. We found that in bed rested volunteers without fluid and salt supplementation intake plasma renin activity and aldosterone in plasma and urine continued to increase during the bed rest period as plasma volume decreased. Moreover, in this group, cyclic nucleotides measured as an indicator of adrenosympathetic system activity increased and prostaglandins as local vasoactive substances decreased during the bed rest period. These variables returned toward the baselines in the post bed rest period as plasma volume deficit was restituted. On the other hand, the hormonal levels in the other two groups remained rather constant during the experimental period. We concluded that daily intake of fluid and salt supplementation may minimize the biochemical and hormonal changes in endurance trained volunteers dorm their exposure to bed rest conditions.  相似文献   

16.
The bioassay of body fluids experiment is designed to evaluate the biochemical adaptation resulting from extended exposure to space flight environment by identifying changes in hormonal and associated fluid and electrolyte parameters reflected in the blood and urine of the participating crewmen. The combined stresses of space flight include weightlessness, acceleration, confinement, restraint, long-term maintenance of high levels of performance, and possible desynchronosis. Endocrine measurements to assess the physiological cost of these stresses have been considered from two aspects. Fluid and electrolyte balance have been correlated with weight loss, changes in the excretion of aldosterone and vasopressin and fluid compartments. The second area involves the estimation of the physiological cost of maintaining a given level of performance during space flight by analysis of urinary catecholamines and cortisol. Inter-individual variability was demonstrated in most experimental indices measured; however, constant patterns have emerged which include: body weight change; increases in plasma renin activity; elevations in urinary catecholamines, ADH, aldosterone and cortisol concentrations. Plasma cortisol decreases in immediate postflight samples with subsequent increase in 24-hour urines. The measured changes are consistent with the prediction that a relative increase in thoracic blood volume upon transition to the zero-gravity environment is interpreted as a true volume expansion resulting in an osmotic diuresis. This diuresis in association with other factors ultimately results in a reduction in intravascular volume, leading to an increase in renin and a secondary aldosteronism. Once these compensatory mechanisms are effective in reestablishing positive water balance, the crewmen are considered to be essentially adapted to the null-gravity environment. Although the physiological cost of this adaptation must reflect the electrolyte deficit and perhaps other factors, it is assumed that the compensated state is adequate for the demands of the environment; however, this new homeostatic set is not believed to be without physiological cost and could, except with proper precautions, reduce the functional reserve of exposed individuals.  相似文献   

17.
Leach CS 《Acta Astronautica》1979,6(9):1123-1135
This review describes the renal-endocrine mechanisms related to the early losses of fluid-electrolytes from the body during weightlessness as well as their contribution to longer term adaptation of fluid-electrolyte balance. The hypotheses presented were generated by a systematic analysis of body fluid and renal dynamics observed under conditions of actual and simulated spaceflight. These have increased our understanding of the effects of acute headward fluid shifts on renal excretion, the factors promoting excess sodium excretion and the regulation of extracellular fluid composition.  相似文献   

18.
The effects of prolonged bedrest in antiorthostatic position (-4 degrees head down) on electrolyte balance were studied in 4 young volunteers. An increase was noted in sodium excretion during the first 4 days. Plasma renin activity and plasma aldosterone varied in parallel manner during the same period. Potassium balance and creatinine clearance were not significantly modified. In light of these data we feel that prolonged bedrest in antiorthostatic position constitutes an effective way to simulate on earth metabolic and hormonal modifications occurring in man under weightlessness conditions.  相似文献   

19.
The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.  相似文献   

20.
The early cardiovascular adaptation to zero gravity, simulated by head-down tilt at 5 degrees, was studied in a series of 10 normal young men. The validity of the model was confirmed by comparing the results with data from Apollo and Skylab flights. Tilt produced a significant central fluid shift with a transient increase in central venous pressure, later followed by an increase in left ventricular size without changes in cardiac output, arterial pressure, or contractile state. The hemodynamic changes were transient with a nearly complete return to the control state within 6 hr. The adaptation included a diuresis and a decrease in blood volume, associated with ADH, renin and aldosterone inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号