首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
航天   8篇
  1995年   3篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
It has been suggested that a daily intake of fluid and salt supplements may be used to prevent bone demineralization in human subjects after prolonged exposure to hypokinesia (diminished muscular activity). Thus, the objective of this investigation was to evaluate the effect of fluid and salt supplementation in the prevention of development of osteoporosis in 64 Wistar rats with an initial body weight of 339-345 g, after exposure to 90 days of hypokinesia. They divided into 4 equal groups: the first group of rats placed under ordinary vivarium conditions and served as vivarium control; the second group were also placed under ordinary vivarium conditions but received daily fluid and salt supplements; the third group were subjected to pure hypokinesia, i.e. without the use of any preventive measures; and the fourth group were submitted to hypokinesia and received daily fluid and salt supplements. For the simulation of the hypokinetic effect the experimental group of rats were kept in small, individual, wooden cages. Through the experimental period the second and fourth group of rats received 8 ml/100 g body wt water and 5 ml 100 g body wt NaCl daily. By the end of the experimental period the animals were decapitated and the spongy matter of tibia and vertebrae of the rats were examined for changes referable to osteoporosis. It was found that the daily intake of fluid and salt supplements caused an increase in the volume density of primary spongiosa of bones. It was concluded that a daily intake of fluid and salt supplements may be used to prevent the development of osteoporosis in rats subjected to prolonged motor activity restriction.  相似文献   
2.
The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day, prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could not be reversed by PE or rehydration in individuals subjected to prolonged restriction of motor activity.  相似文献   
3.
The objective of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on the hemoglobin content of endurance trained athletes during hypokinesia (decreased number of steps from 10,000 to 3000 steps per day). The studies were performed on 30 long-distance runners who had a VO2max average of 66 ml kg-1 min-1 and were in the age range of 19-24 years. Prior to their exposure to hypokinesia (HK) of 364 days, all volunteers were on an average of 10,000 steps per day. All volunteers were divided into three equal groups: the first group underwent normal ambulatory life (control subjects), the second group was kept under continuous restriction of motor activity (hypokinetic subjects), and the third group was placed under continuous restriction of motor activity and consumed 26 ml water kg-1 body weight daily and 0.1 g sodium chloride kg-1 body weight in the form of supplementation (hyperhydrated subjects). For simulation of the hypokinetic effect, the number of steps taken per day by the second and third groups of volunteers was restricted to an average of 3000. During the hypokinetic period we determined reticulocytes (Rt), hemoglobin (Hb), hematocrit (Hct), plasma volume (PV), red blood cell (RBC) mass and VO2max. In hyperhydrated volunteers the content of Hb and Hct decreased significantly, while PV, RBC mass and Rt count increased significantly. In hypokinetic volunteers Hb and Hct increased, while PV, RBC and Rt decreased significantly. It was concluded that chronic hyperhydration may be used to attentuate an increase in the Hb content of physically conditioned subjects during prolonged restriction of motor activity.  相似文献   
4.
It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.  相似文献   
5.
The objective of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on bone mineralization in physically healthy male volunteers after exposure to hypokinesia (decreased number of steps taken/day) over a period of 364 days. The studies were performed after exposure to 364 days of hypokinesia (HK) on 18 physically healthy male volunteers who had an average VO2max of 65 ml/kg/min and were aged between 19 and 24 years. For the simulation of the hypokinetic effect the volunteers were kept under an average of 1000 steps/day. The subjects were divided into three equal groups of 6: 6 underwent a normal ambulatory life (control group), 6 were placed under HK (hypokinetic group) and the remaining 6 were subjected to HK and consumed a daily FSS (water 26 ml/kg body wt and NaCl 0.10 mg/kg body wt) (hyperhydrated group). The density of the ulnar, radius, tibia, fibular, lumbar vertebrae and calcenous was measured. Calcium and phosphorus changes, plasma volume, blood pressure and body weight were determined. Calcium content in the examined skeletal bones decreased more in the hypokinetic subjects than in the hyperhydrated subjects. Urinary calcium and phosphorus losses were more pronounced in hypokinetic than hyperhydrated subjects. Plasma volume and body weight increased in hyperhydrated subjects, while it decreased in hypokinetic subjects. It was concluded that a daily intake of FSS may be used to neutralize bone demineralization in physically healthy subjects during prolonged restriction of motor activity.  相似文献   
6.
It has been suggested that hypokinesia (diminished muscular activity) may induce more changes in fluid electrolyte metabolism and hormonal concentration of blood plasma in conditioned than unconditioned men. Thus, the objective of this investigation was to determine the effect of 7 days of hypokinesis (HK) on fluid-electrolyte excretion and hormonal content of blood in 12 physically healthy men aged 19-23 years. They were divided into two equal groups according to their physical conditioning. For the simulation of the hypokinetic effect the men were kept under a rigorous bed rest regime. During the background period (BGP), that is prior to the exposure to HK, and under HK, the rate of elimination of fluid, sodium and potassium, and the content of blood plasma aldosterone and cortisol was measured. The amount of excretion of fluid and electrolytes increased while blood plasma aldosterone content decreased. In the conditioned men, a greater excretion of fluid and electrolytes and a greater reduction of plasma aldosterone concentration was observed. It was concluded that hypokinesia induced substantial changes in fluid-electrolyte excretion and hormonal content of blood plasma in both conditioned and unconditioned men.  相似文献   
7.
The aim of this study was to evaluate the effect of different body positions on renal excretion of fluid and electrolytes after exposure to 364 days of decreased number of steps per day (hypokinesia, HK). The studies were performed on 18 endurance trained male volunteers aged 19-24 years who had an average of VO2max 67 ml/kg body/min. All volunteers were divided into three equal groups: the 1st group subjected to 12 h orthostatic position (OP) and 12 h clinostatic position (CP)/day, the 2nd group exposed to 8 h orthostatic position and 14 h clinostatic position/day, and the 3rd group submitted to 10 h orthostatic position and 16 h clinostatic position/day for 364 days. For the simulation of the hypokinetic effect all volunteers were kept under an average of 3000 steps/day for 364 days. Diuresis and the concentrations of sodium, potassium, chloride, calcium and magnesium as well as excretion of creatine were determined in 24-h urine samples. By the end of the hypokinetic period all volunteers, regardless of their body position during HK, manifested a significant increase in renal excretion of fluid and electrolytes as compared to prehypokinetic period values. It was concluded that prolonged restriction of motor activity induced a significant increase in renal excretion of fluid and electrolytes in endurance trained subjects regardless to their body position and duration thereof per day.  相似文献   
8.
The aim of this study was to determine whether fluid-electrolyte changes, which are developed during prolonged hypokinesia (decreased number of km per day), can be prevented or minimized with the use of a daily intake of fluid and salt supplementation (FSS). The experiments on hypokinesia (HK) were performed for 364 days on 18 endurance-trained male volunteers in the age range of 21-23 years, with an average maximum oxygen uptake of 67 ml kg-1. All volunteers were divided into three equal groups: six volunteers were placed on a continuous regime of exercise of 14.0 km day-1 and served as control subjects. Six volunteers were subjected to continuous HK without FSS and were considered as the unsupplemented hypokinetic subjects (UHS). The remaining volunteers were under continuous HK and FSS and were considered as the supplemented hypokinetic subjects (SHS). For the simulation of the hypokinetic effect, the UHS and SHS groups were kept continuously under an average of 2.7 km day-1 for the duration of the experiment. Prior to exposure to HK, all volunteers were on the same exercise regime as the controls. During the pre-experimental period of 60 days and during the post-experimental period, urinary excretion of electrolytes and concentrations of sodium, potassium, calcium and magnesium in serum as well as serum osmolality were determined. An increased renal excretion of fluid and electrolytes and a decreased serum electrolyte concentration were observed in the SHS, while a decreased renal excretion of fluid and electrolytes and an increased serum electrolyte concentration were observed in the UHS, during the initial stages of the post-hypokinetic period. By day 30 of the post-hypokinetic period these changes were reverted back to the control levels. We concluded that chronic hyperhydration may be used to attenuate urinary and serum electrolyte changes in endurance-trained volunteers after exposure to prolonged HK.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号