首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.  相似文献   

2.
The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged.  相似文献   

3.
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.  相似文献   

4.
Popa R  Smith AR  Popa R  Boone J  Fisk M 《Astrobiology》2012,12(1):9-18
The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ~12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.  相似文献   

5.
The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50?nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2?mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets.  相似文献   

6.
Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.  相似文献   

7.
This experimental study investigated how the dynamics of the crystallization of the evaporite mineral halite could affect the accumulation and preservation of organic macromolecules present in the crystallizing solution. Halite was grown under controlled conditions in the presence of polymer nanoparticles that acted as an analog to protocellular material. Optical microscopy, atomic force microscopy, and laser scanning confocal fluorescence microscopy were used to trace the localization of the nanoparticles during and after growth of halite crystals. The present study revealed that the organic nanoparticles were not regularly incorporated within the halite, but were very concentrated on its surfaces. Their distribution was controlled dominantly by the morphologic surface features of the mineral rather than by specific molecular interactions with an atomic plane of the mineral. This means that the distribution of organic molecules was controlled by surfaces like those of halite's evaporitic growth forms. The experiments with halite also demonstrated that a mineral need not continuously incorporate organic molecules during its crystallization to preserve those molecules: After rejection by (non-incorporation into) the crystallizing halite, the organic nanoparticles increased in concentration in the evaporating brine. They ultimately either adsorbed in rectilinear patterns onto the hopper-enhanced surfaces and along discontinuities within the crystals, or they were encapsulated within fluid inclusions. Of additional importance in origin-of-life considerations is the fact that halite in the natural environment rapidly can change its role from that of a protective repository (in the absence of water) to that of a source of organic particles (as soon as water is present) when the mineral dissolves.  相似文献   

8.
Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.  相似文献   

9.
Walsh MM 《Astrobiology》2004,4(4):429-437
Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.  相似文献   

10.
Methods of detecting extraterrestrial forms of organic matter should take into account the results of research in the effects of irradiation on the synthesis of biopolymers. Processes occurring on clay mineral surfaces and on the surfaces of minerals of different kinds are illustrated and the possible role of clays in prebiological evolution is discussed.  相似文献   

11.
Fluid inclusions in minerals hold the potential to provide important data on the chemistry of the ambient fluids during mineral precipitation. Especially interesting to astrobiologists are inclusions in low-temperature minerals that may have been precipitated in the presence of microorganisms. We demonstrate that it is possible to obtain data from inclusions in chemosynthetic carbonates that precipitated by the oxidation of organic carbon around methane-bearing seepages. Chemosynthetic carbonates have been identified as a target rock for astrobiological exploration. Other surficial rock types identified as targets for astrobiological exploration include hydrothermal deposits, speleothems, stromatolites, tufas, and evaporites, each of which can contain fluid inclusions. Fracture systems below impact craters would also contain precipitates of minerals with fluid inclusions. As fluid inclusions are sealed microchambers, they preserve fluids in regions where water is now absent, such as regions of the martian surface. Although most inclusions are < 5 microns, the possibility to obtain data from the fluids, including biosignatures and physical remains of life, underscores the advantages of technological advances in the study of fluid inclusions. The crushing of bulk samples could release inclusion waters for analysis, which could be undertaken in situ on Mars.  相似文献   

12.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   

13.
Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral-water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral-water-cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity-Bacteria-EPS evolution-Biofilms-Cytotoxicity-Silica-Anatase-Alumina. Astrobiology 12, 785-798.  相似文献   

14.
We present new experimental results on the formation of oxidants, such as hydrogen peroxide, ozone, and carbonic acid, under ion irradiation of icy mixtures of water/carbon dioxide at different ratios and temperatures (16 and 80 K). Pure water ice layers and mixtures with carbon dioxide were irradiated by 200 keV He+ ions. We found that the CO(2)/H(2)O ratio progressively decreased to a value of about 0.1, the H(2)O(2) production increased with increasing CO(2) abundance at both 16 and 80 K, and the CO and H(2)CO(3) production increased with increasing CO(2) abundance at 16 K. At 80 K, the synthesis of CO was less efficient because of the high volatility of the molecule that partially sublimed from the target. The production of carbonic acid was connected with the production of CO(3). O(3) was detected only after ion irradiation of CO(2)-rich mixtures. The experimental results are discussed with regard to the relevance they may have in the production of an energy source for a europan or a martian biosphere.  相似文献   

15.
Gorbushina A 《Astrobiology》2003,3(3):543-554
So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.  相似文献   

16.
Treiman AH 《Astrobiology》2003,3(2):369-392
Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).  相似文献   

17.
Iron-magnesium silicate bioweathering on Earth (and Mars?)   总被引:1,自引:0,他引:1  
We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars.  相似文献   

18.
从固体表面对气体分子的作用着手分析气相羽流沉积污染的内在机理,阐述了固体表面对气体分子的物理吸附、化学吸附特性,给出吸附速率方程、脱附速率方程以及沉积速率方程,并通过区分贴壁吸附层、物理吸附层,重点研究了物理吸附层的脱附速率。选取有代表性的CO2、NH3、H2O以及N2H4等气体,确定其物理吸附层脱附模型的参数,得到了与经验脱附率曲线较为一致的理论脱附率曲线。分析了单组元肼催化分解姿控发动机对太阳能帆板的气相沉积污染。  相似文献   

19.
Chou IM  Seal RR 《Astrobiology》2003,3(3):619-630
Epsomite (MgSO(4).7H(2)O) and hexahydrite (MgSO(4).6H(2)O) are common minerals found in marine evaporite deposits, in saline lakes as precipitates, in weathering zones of coal and metallic deposits, in some soils and their efflorescences, and possibly on the surface of Europa as evaporite deposits. Thermodynamic properties of these two minerals reported in the literature are in poor agreement. In this study, epsomite-hexahydrite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 25 and 45 degrees C. Results obtained for the reaction epsomite = hexahydrite + H(2)O, as demonstrated by very tight reversals along each humidity buffer, can be represented by ln K(+/- 0.012) = 20.001 - 7182.07/T, where K is the equilibrium constant, and T is temperature in Kelvin. The derived standard Gibbs free energy of reaction is 10.13 +/- 0.07 kJ/mol, which is essentially the same value as that calculated from vapor pressure measurements reported in the literature. However, this value is at least 0.8 kJ/mol lower than those calculated from the data derived mostly from calorimetric measurements.  相似文献   

20.
To identify microscopic particles as actual fossil material, it would be useful to have a means of unambiguously recognizing which carbonaceous deposits found in rocks are residues from once-living organisms (i.e., biogenic material). Those residues consist of many different, mostly aromatic (i.e., benzene ring-containing), C-O-H-dominated molecules, and typically are called kerogens. Raman microprobe spectroscopy can be applied to minute samples of ancient kerogens either isolated from their host rocks or in situ in thin section. The Raman spectra generated by monochromatic blue or green laser excitation (e.g., at 488, 514, 532 nm) typically show only generic spectral features indicative of discontinuous arrays of condensed benzene rings (i.e., structures referred to as "disordered carbonaceous material"). Thus, despite the complex chemistry of kerogens and the expected presence of H, O, and N, the Raman spectra typically do not show any evidence of functional groups, such as CH, CH(2), CH(3), CO, and CN. Moreover, the same kind of Raman spectral signature as is obtained from kerogens also is obtained from many other poorly ordered carbonaceous materials that arise through nonbiological processes, such as in situ heating of organic or inorganic compounds (whether or not they are of biological origin), metamorphic mobilization of preexisting carbon compounds, and high-temperature precipitation from hydrothermal solutions. Thus, neither a Raman spectrum, nor a Raman image derived from such spectra, definitively can identify a sample as "kerogen," but only as "disordered carbonaceous material." Clearly, the fact that small, opaque grains consist of disordered carbonaceous material is necessary, but not sufficient, to prove them to be residues of cellular material and, thus, biogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号