首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
朱亮  姜长生  张春雨 《航空学报》2007,28(3):673-677
 研究了一种自适应轨迹线性化控制策略并应用于空天飞行器(ASV)飞行控制系统设计。通过理论分析指明当前轨迹线性化控制方法(TLC)对系统中的不确定存在鲁棒性不足的问题。为了解决这一问题,首先研究了一种径向基神经网络干扰观测器(RDO)技术,严格证明了RDO对于系统中不确定因素具有良好的逼近能力。然后利用RDO输出得到一种新的基于RDO的自适应TLC控制策略。神经网络自适应律采用Lyapunov方法设计,保证了闭环系统所有信号有界。最后采用新方案实现了ASV飞控系统,仿真结果表明整个闭环系统在鲁棒性能方面得到很大提高。  相似文献   

2.
提出了鲁棒自适应模糊轨迹线性化控制(RAFTLC)方法并应用于空天飞行器(ASV)飞行控制系统设计.根据系统的先验知识, 设计出标称模糊系统对系统的未知干扰和不确定进行估计, 并通过鲁棒自适应控制项来克服标称模糊系统逼近误差和权值误差的影响.标称模糊系统逼近误差和权值误差的界在线调整.采用Lyapunov方法证明了闭环系统的所有信号一致最终有界.最后利用提出的控制方案设计了ASV飞行控制系统, 并在高超声速条件下进行了仿真验证.仿真结果表明了控制方案的有效性和鲁棒性.   相似文献   

3.
基于T-S模糊系统的空天飞行器鲁棒自适应轨迹线性化控制   总被引:1,自引:0,他引:1  
张春雨  方炜  姜长生 《航空学报》2007,28(5):1153-1161
 基于T-S模糊系统提出了鲁棒自适应轨迹线性化控制(RATLC)方法。利用T-S模糊系统逼近未知干扰和不确定性因素,并采用Lyapunov方法设计了鲁棒自适应控制律。不论系统状态的维数和用于逼近不确定的模糊系统规则数为多少,整个系统仅有两个参数在线调整。理论分析证明了闭环系统所有信号一致最终有界。应用提出的控制方案设计了空天飞行器(ASV)飞行控制系统,并在高超声速飞行条件下进行了仿真验证,仿真结果表明了控制方案的有效性和鲁棒性。  相似文献   

4.
孙琦  周军  林鹏 《飞行力学》2011,29(1):46-49
针对高超声速飞行器不确定性因素多、参数变化范围大的特点,将特征建模理论与多模型自适应控制方法相结合,设计了一种基于特征模型的鲁棒自适应控制方案.将飞行器的飞行包络划分为若干个子空间,基于对象特征模型分别设计各子空间的H,鲁棒控制器,飞行过程中,通过在线辨识得到的特征模型参数对各子控制器进行平滑切换.该控制方案不但可以较...  相似文献   

5.
针对含有未建模动态的微小型直升机非线性模型,设计了基于反步法和自适应模糊系统的自主飞行控制器.该控制器包含两个回路:航迹控制外回路和姿态控制内回路.外回路通过旋转矩阵实现对内回路姿态的控制,而非传统的欧拉角或姿态四元数.控制器采用自适应Takagi-Sugeno(TS)模糊系统在线补偿系统未建模动态的影响,并利用反步法完成控制器综合.所设计的算法在确保整个控制系统稳定性的同时又可保证系统能够有效应对未建模动态的影响.系统仿真结果表明,在盘旋上升飞行模态下控制系统能够快速准确地跟踪预设轨迹,并且具有良好的鲁棒性能.  相似文献   

6.
应用保护映射理论的高超声速飞行器自适应控制律设计   总被引:2,自引:2,他引:0  
肖地波  陆宇平  刘燕斌  许晨 《航空学报》2015,36(10):3327-3337
针对高超声速飞行器包线范围广、参数变化大的控制需求,应用保护映射理论提出一种高超声速飞行器的自适应控制律设计方法。首先建立整个飞行包线内的线性变参数(LPV)模型,在参数变化边界点设计一个初始的控制结构和参数,然后基于保护映射理论分析初始控制结构使闭环系统稳定的参数范围,通过迭代自动获取整个包线内满足性能指标的控制参数,进而通过多项式拟合设计出高超声速飞行器自适应控制律。所提出的方法能够根据初始控制结构自动寻找一系列满足性能要求的控制器参数,并确定这些控制参数满足闭环系统稳定的设计范围。仿真结果表明,所设计的自适应控制律能够确保高超声速飞行器大包线的设计要求,实现闭环系统的鲁棒稳定。  相似文献   

7.
 针对能够采用仿射非线性表示的含有不确定动态的非线性系统 ,提出了一种鲁棒自适应控制方法 ,该方法根据离线辨识出的受控对象的已知部分 ,采用神经网络在线辨识其未知部分 ,并针对辨识得到神经网络模型采用反馈线性化方法设计出自适应控制器 ,同时引入滑模控制方法以增强控制系统的鲁棒性 ,从而实现鲁棒自适应控制。通过对具有未建模动态的非线性直升机空气动力学模型 ,设计了总距通道系统。仿真表明该方法是有效的。  相似文献   

8.
针对飞机自动着陆飞行提出了基于神经网络的鲁棒自适应非线性动态逆控制器设计方案。首先采用非线性动态逆方法设计着陆飞行的基本控制律,再利用多层感知器神经网络设计适当的权值调整规则使其能够自适应地逼近和补偿逆误差。仿真结果表明,所设计的飞行控制系统是有效的,系统能够克服动态逆误差对着陆飞行控制带来的不利影响。  相似文献   

9.
朱美印  王曦  张松  但志宏  裴希同  缪柯强  姜震 《推进技术》2019,40(11):2587-2597
针对高空台飞行环境模拟系统的温度和压力在整个工作包线内的鲁棒性能控制问题,提出了一种基于LMI极点配置的PI增益调度控制设计方法。在考虑变比热容腔微分方程、管道热传导、调节阀流量特性、液压伺服动态、传感器增益对飞行环境模拟系统造成的建模不确定性的基础上,建立了完整、准确的飞行环境模拟系统非线性模型;对非线性模型进行了线性化,并根据线性模型推导了基于LMI极点配置的PI控制器设计算法;在飞行环境模拟系统的工作包线内选取了36个稳态点设计了基于LMI极点配置的PI增益调度控制器;设计了两种飞行环境模拟试验来验证设计的PI增益调度控制器的鲁棒性能。仿真结果表明,飞行环境模拟系统温度的稳态误差和动态误差均小于0.1%,压力的稳态误差小于0.5%,动态误差小于0.7%。  相似文献   

10.
基于自适应模糊系统的空天飞行器非线性预测控制   总被引:1,自引:0,他引:1  
方炜  姜长生 《航空学报》2008,29(4):988-994
 针对一类多输入多输出非线性不确定系统,提出了基于自适应模糊系统的非线性预测控制方法。控制器由基于模糊系统的非线性预测控制器和鲁棒自适应控制器两个部分组成。根据系统的跟踪误差在线调整模糊系统的权值,使得模糊系统一致逼近被控对象中的非线性函数,通过泰勒展开设计出基于模糊系统的非线性预测控制律,避免了预测控制在线优化带来的繁重的计算负担。鲁棒自适应控制器则用于减少不确定和模糊逼近误差对系统的影响。所设计的控制器保证了闭环系统的最终一致有界稳定。基于Lyapunov稳定原理,给出了理论证明和分析。最后利用提出的控制方案设计了空天飞行器高超声速飞行姿态的控制系统,仿真结果表明了控制方案的有效性。  相似文献   

11.
折叠翼飞行器发射段鲁棒非线性控制系统设计   总被引:1,自引:0,他引:1  
曹立佳  张胜修  李晓峰  刘毅男 《航空学报》2011,32(10):1879-1887
为解决折叠翼飞行器在发射段各项特性变化较大、对飞行控制律鲁棒性要求较高的问题,设计了一种以块控反步法为基础的自适应鲁棒非线性控制器.在发射段动态模型基础上,该控制器采用径向基函数( RBF)神经网络自适应逼近飞行器特性变化时的系统未知不确定性和干扰,通过在虚拟控制律中引入动态面控制技术避免多重微分运算,克服了传统反步法...  相似文献   

12.
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.  相似文献   

13.
基于反作用发动机推力的空天飞行器再入姿态飞行控制   总被引:1,自引:0,他引:1  
研究了空天飞行器(ASV)再入跨大气层飞行时的姿态控制问题。在ASV跨大气层再入飞行时,通过反作用控制系统(RCS)中的反作用发动机推力产生控制力矩来控制ASV的姿态,以补偿气动舵面操纵失效或者部分失效而引起的控制力矩不足;随着空气密度的增加,气动舵面逐步介入控制系统,RCS随之逐步退出.由于快回路控制器产生进行姿态控制所需要的控制力矩,其通过相应的控制分配将控制力矩映射到作动器,为了减轻作动器的抖振,提出了利用基于区域模型的T-S模糊多模型控制方法设计快回路控制器,在跟踪期望角速度的同时,柔化控制信号.最后通过仿真验证了所提方法的有效性.   相似文献   

14.
针对高超声速飞行器巡航段执行器控制效益损失故障和卡死故障问题,基于高超声速飞行器纵向运动模型,将自适应算法与改进的径向基函数神经网络(RBFNN)方法相结合,设计了一种自适应神经网络容错控制器。所提出的容错控制方法具有无需估计执行器故障值的优点,且设计的控制算法结构简单,无需大量实时计算,可以快速处理故障的发生,确保系统在参数不确定、恒定或时变执行器故障与卡死故障情况下仍具有稳定跟踪能力。最后,仿真验证了该方法的有效性。  相似文献   

15.
《中国航空学报》2020,33(7):2024-2042
Designing a stable and robust flight control system for an Unmanned Aerial Vehicle (UAV) is an arduous task. This paper addresses the trajectory tracking control problem of a Ducted Fan UAV (DFUAV) using offset-free Model Predictive Control (MPC) technique in the presence of various uncertainties and external disturbances. The designed strategy aims to ensure adequate flight robustness and stability while overcoming the effects of time delays, parametric uncertainties, and disturbances. The six degrees of freedom DFUAV model is divided into three flight modes based on its airspeed, namely the hover, transition, and cruise mode. The Dryden wind turbulence is applied to the DFUAV in the linear and angular velocity component. Moreover, different uncertainties such as parametric, time delays in state and input, are introduced in translational and rotational components. From the previous work, the Linear Quadratic Tracker with Integrator (LQTI) is used for comparison to corroborate the performance of the designed controller. Simulations are computed to investigate the control performance for the aforementioned modes and different flight phases including the autonomous flight to validate the performance of the designed strategy. Finally, discussions are provided to demonstrate the effectiveness of the given methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号