首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
GPS based systems become extremely competitive for space applications because of their all-weather capabilities and continual information on position, velocity, precise time and even attitude to increase mission effectiveness, reduce mission cost, minimize requirements of on-board devices. In this paper, space application environment and error sources have been systematically analyzed, including geometric location of user with GPS satellites, dynamic state, physical environment and the effects on positioning accuracy. Several special differential GPS technologies to space use are proposed  相似文献   

2.
This paper addresses the question: “Why aren't tightly-coupled OPS/INS systems everywhere, on aircraft, ships and land vehicles?” Two barriers to the widespread use are cited. One is the high cost of the INS, and the other is the cost and complexity of tightly-coupled OPS/INS integration. One of those two barriers has recently been diminished drastically with the development of a standardized software package for tightly-coupled integration. In the past, only the largest corporations have been able to pay the initial development cost for tightly-coupled OPS/INS integration, usually with funding from a large defense program. Using the new software package, integration and van test can be accomplished in a matter of days, and this has been demonstrated with field trials. The package is intended primarily for small companies that otherwise would not be able to build tightly-coupled OPS/INS systems at all. What would have been a prohibitive 3- or 4-man year development effort is reduced to a few man weeks. To accomplish an integration, the system integrator has to find a way, through serial interfaces or by some other means, to get the INS measurements of acceleration (accumulated velocity change ΔV) and attitude rate (accumulated angle change Δ&thetas;) into a processor, along with the raw data of a GPS receiver. He also has to find a way to time tag the INS ΔV, Δ&thetas; with GPS time. The rest of tightly-coupled OPS/INS integration is predominately accomplished in the standardized software package. That leaves the cost of the INS as the only remaining barrier to the very widespread use of OPS/INS, and invites new development of low cost inertial sensors. The focus of this paper is on the software package, and how it achieves standardization and ease of use while retaining the flexibility to produce optimal results with a variety of INS and GPS receiver types  相似文献   

3.
基于联邦卡尔曼滤波的测量船导航信息处理方法   总被引:1,自引:0,他引:1  
为了提高航天测量船导航系统提供的位置、姿态及速度的精度,以满足飞行器测控的特殊要求,从信息融合的角度进行分析,针对多传感器信息融合技术在工程中的应用作进一步探讨,提出了基于信息融合技术的组合导航方案,构造了INS/CNS/GPS/DVL组合导航系统滤波体系结构,构建了误差模型,阐述了融合算法。仿真及实测数据证明,设计的联邦滤波器可以充分利用各种冗余信息,提高导航的数据精度。  相似文献   

4.
《中国航空学报》2023,36(4):486-495
Attitude references are greatly needed for the evaluation and calibration of Inertial Navigation Systems (INSs), which are widely used in gravimeter, marine, and aeronautical navigation. High-accuracy turntable, INS, and Global Navigation Satellite System have been utilized to verify the performance of relatively low-accuracy INS. The accuracy requirement of the attitude reference continuously increases with the rapid improvement of inertial sensors and navigation algorithms. However, the cost of attitude determination system increases rapidly with the increase of attitude accuracy requirement. To solve this limitation, the integration of level meter, INS, and low-cost turntable is proposed to provide level attitude, such as roll and pitch. The turntable is utilized to rotate the INS. An integration model of the level meter and INS is built to estimate the level attitude and reduce the cost of the turntable. The proposed method successfully avoids the dependence on high-accuracy turntables. An observability degree analysis is conducted to improve the level attitude accuracy further. The simulation and turntable test results indicate that the proposed method can provide high-accuracy level attitude without high-accuracy INS or turntable and is applicable to error calibration and attitude evaluation of INS.  相似文献   

5.
An experiment is described to validate the concept of developing an autonomous integrated spacecraft navigation system using onboard Global Positioning System (GPS) and inertial navigation system (INS) measurements. Previous work by the authors (1988, 1990) has demonstrated the feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e., improvement in position, velocity and attitude information. An important aspect of this research is the automatic real-time reconfiguration capability of the system, which is designed to respond to changes in a spacecraft mission under the control of an expert system  相似文献   

6.
以高超声速飞行器为对象,建立了卫星/惯性组合导航模型。选择组合系统的状态量并建立状态方程,推导位置观测方程和速度观测方程,通过位置、速度交替组合实现卫星/惯性系统的组合。通过仿真验证算法的有效性,仿真结果表明卫星/惯性组合导航可以得到较好的位置和速度信息,适中的姿态精度信息。  相似文献   

7.
The Applications Technology Satellite-6 (ATS-6) RF interferometer is utilized primarily as a precision 3-axis attitude sensor having an unambiguous field of view of 350°. This function requires two separated ground transmitters, each using one of the two available frequency channels or sharing a single channel by time multiplexing. For 3-axis control, one uplink transmitter can provide 2-axis attitude (pitch and roll) with other sensors (e.g., a Polaris tracker) providing yaw attitude. By utilizing two uplink transmitters and the Earth sensor or three time multiplexed uplink transmitters, the interferometer can also provide measurements of ATS-6 spacecraft orbit position. Uplink frequencies are 6.150 and 6.155 GHz. The receiving antennas are spaced at 19.95 wavelengths (?) for the vernier baseline and 1.66 ? for the coarse baseline. Spacecraft system weight is 8.39 kg (18.5 lb) and power requirement is 15.5 W. Flight evaluation results are given for the interferometer including R F link budgets, modulation of uplink carrier, signal-to-noise ratio, and dropout behavior. A hardware calibration model is described, containing major biases in the phase measurements. Techniques for flight calibration as both an attitude and spacecraft position sensor are outlined . Flight testing has shown that on-line calibration of receiver/converter biases must be performed on a short term routine basis. Interferometer resolution was found to be 0.00140 space angle with negligible noise (jitter) at transmitted power levels above 72 dBW. As an attitude sensor, the interferometer has demonstrated the ability to provide stabilization to better than 0.  相似文献   

8.
一个实现精确姿态显示的飞行控制系统不仅能改善飞行品质,而且能保障飞行任务的圆满完成,飞行姿态数据的研究与设计具有重大的安全意义和研究价值.设计了以STM32F103为核心控制芯片的飞行控制系统,通过读取HMC5883磁阻传感器、MPU6050三轴姿态传感器、MS5611气压计的数据,编入相应控制程序,获取飞行器的三轴姿态和高度位置,并将取得精确的姿态数据通过4G移动网络传输到手机客户端上,保证飞行中GPS以及遥控信号失灵等突发状况时,能够及时地根据数据调整飞行姿态,达到安全返航的目的.实验测试结果表明,系统实时性好,可靠性高,易于安装,调试简单,具有较高的实用价值.  相似文献   

9.
Recent developments in airborne Doppler and ground mapping navigation radars and ground and satellite based radio systems are described. Simultaneous lobing and slope tracking techniques can remove the well-known Doppler sea bias error in fast and slowly moving vehicles. Doppler velocity information can be extracted from coherent forward-looking mapping radars, and high position fixing accuracy can be achieved by synthetic aperture radars. In radio navigation systems, such as Loran, Omega, and satellite systems, direct-ranging and differential techniques greatly reduce the geometric dilution and propagation effects which have plagued conventional radio navigation systems. The advantages gained by mixing of the data from these and other navigation sensors in a digital multisensor system are discussed and approaches for processing these data are suggested.  相似文献   

10.
An algorithm, combining velocity/height estimates, obtained from an airborne body fixed image shift estimator with auxiliary on-board measurements and sparsely stored terrain profile information constitutes an entirely passive autonomous navigation system suitable for moderate-g flight missions. Two versions are addressed. The "naive estimator," in which altitude estimates are multiplied by velocity/height estimaters, yields ground velocity. Position, obtained by integration, diverges with time. The "extended Kalman filter" (EKF) version, in which velocity and position are defined as state space components, locks on the stored terrain profile and does not diverge with time. It degenerates into the "naive estimator" if the terrain is completely flat. Numerical examples indicate excellent performance potential of the EKF estimator.  相似文献   

11.
An airborne system has been developed for charting shallow coastal and inland waters. The primary components of this system are an aerial survey camera, a profiling laser radar, an analytical stereo plotter, and a multisensor track recovery system (TRS). The TRS comprises a gimbaled inertial navigation system and a number of auxiliary sensors which acquire redundant position and attitude information. The sensor data are combined postmission using a U-D factorized Kalman filter and modified Bryson-Frazier smoother to compute accurate estimates of the orientation parameters of the survey camera at the times of film exposure. These parameters are used to position each overlapping pair of photographs on the analytical plotter to form a stereo image and corresonding analytical stereomodel from which water depth measurements are made. Flight trial results demonstrate that the TRS can achieve radial position and attitude accuracies which exceed 1 m and 2 arcmin root mean square (rms), respectively, and that this level of performance is sufficient to enable water depth measurements to be made to an accuracy of better than 0.65 m (rms).  相似文献   

12.
采用高精度卫星导航速度、位置信息以及星敏感器提供的姿态信息设计十表冗余捷联惯组的标定模型,包含陀螺和加速度计的零次项和标度因数,对卫星和星敏感器辅助的冗余激光陀螺捷联惯组进行实时在轨标定.利用标准Kalman滤波和Sage-Husa自适应滤波作为估计算法,对十表冗余捷联惯组参数进行在线估计.数值仿真结果表明:参数标定精度均在7%以内,是一种实时的在轨标定方法,满足误差补偿要求.冗余惯组在轨标定方法为航天器高精度定姿和定轨提供了一种理论参考.  相似文献   

13.
永磁同步电机在应用中通常需要位置传感器,但是位置传感器的使用不仅增加了系统成本,而且增大了电机体积,限制了其应用场合,因此研究无位置传感器的电机控制技术具有重要意义。滑模观测器可以对永磁同步电机的转子位置和速度进行估算,但是传统的滑模观测器常采用含有符号函数的切换方式,在快速切换的同时容易产生抖振现象。为减小抖振并提高系统的稳定性,采用改进型滑模观测器对转子位置和速度进行估算,并将估算的速度和位置信息反馈给控制系统实现系统的闭环控制。最后通过半实物仿真平台对控制算法进行实时仿真,验证了方案的有效性和正确性。  相似文献   

14.
赵明智 《航空计测技术》2009,29(6):21-23,31
在捷联惯导技术应用到石油采掘与矿井勘探领域的背景下,探讨如何使用低精度的惯性传感器获得精确的初始姿态信息。本文借鉴陀螺寻北仪的两位置寻北方案,研究了基于寻北技术的初始对准方法,利用该方法可滤除惯性传感器的常值漂移。仿真表明在使用低精度的惯性传感器条件下,利用该方法能获得较高精度的初始姿态信息。  相似文献   

15.
On-orbit spacecraft face many threats, such as collisions with debris or other spacecraft.Therefore, perception of the surrounding space environment is vitally important for on-orbit spacecraft.Spacecraft require a dynamic attitude tracking ability with high precision for such missions.This paper aims to address the above problem using an improved backstepping controller.The tracking mission is divided into two phases: coarse alignment and fine alignment.In the first phase,a traditional saturation controller is utilized to limit the maximum attitude angular velocity according to the actuator's ability.For the second phase, the proposed backstepping controller with different virtual control inputs is applied to track the moving target.To fulfill the high precision attitude tracking requirements, a hybrid attitude control actuator consisting of a Control Moment Gyro(CMG) and Reaction Wheel(RW) is constructed, which can simultaneously avoid the CMG singularity and RW saturation through the use of an angular momentum optimal management strategy, such as null motion.Finally, five simulation scenarios were carried out to demonstrate the effectiveness of the proposed control strategy and hybrid actuator.  相似文献   

16.
The problem of "sense-and-avoid" for Unmanned Aircraft Systems (UAS) is genuinely multi-dimensional: there is a wide range of UAS sizes, speeds, and maneuverability, as well as missions for which these UAS will be used. There are also a variety of sensors that might be used for sense-and-avoid, which have widely varying capabilities to measure distance or angle to an obstacle, as well as closing rate, and time to collision. Most sensors are not able to provide all required information about the geometry of an encounter; therefore, using a combination of sensors offers one possible solution. We are investigating the concept that there may be a variety of possible sensor solutions for each distinct UAS capability or mission. By studying the breadth of UAS types and missions, and selectively testing certain sensors in the field, we are evaluating the limits to the capabilities of sensors and sensor combinations. This report is on the progress of this multi-dimensional evaluation. We have scoped the dimensions for evaluating UAS capabilities and the capabilities of sensors. We are experimentally evaluating sensor parameters on a variety of aircraft to validate the specified capabilities. This reports on our methodology for field evaluation of sensor technology and the lessons learned on evaluation platforms and capabilities.  相似文献   

17.
Small UAV Automation Using MEMS   总被引:1,自引:0,他引:1  
This paper presents a framework for the automation of a small UAV using a low cost sensor suite, MNAV, and an embedded computing platform, Stargate, which together provide a complete avionics package for aerial robotic applications. In order to provide a complete INS solution (i.e., attitude, velocity, position, and biases), an extended Kalman filter algorithm is developed and implemented in real-time. A devised control strategy utilizes multiple PID loops with a hierarchy enabling simple attitude stabilization to full waypoint navigation. The developed ground station unit, a laptop computer, communicates with the avionics package via 802.11b WiFi, displays the aircraft critical information, provides in-flight PID gain tunings, and uploads waypoints through a simple GUI. The system is installed in an off-the-shelf delta-wing R/C aircraft and demonstrates its performance for aerial robotic applications  相似文献   

18.
In outdoor environments, GPS is often used for pedestrian navigation by utilizing its signals for position computation, but in indoor or semi-obstructed environments, GPS signals are often unavailable. Therefore, pedestrian navigation for these environments should be realized by the integration of GPS and inertial navigation system (INS). However, the lowcost INS could induce errors that may result in a large position drift. The problem can be minimized by mounting the sensors on the pedestrian's foot, using zero velocity update (ZUPT) method with the standard navigation algorithm to restrict the error growth. However, heading drift still remains despite using ZUPT measurements since the heading error is unobservable. Also, tbot mounted INS suffers from the initialization ambiguity of position and heading from GPS. In this paper, a novel algorithm is developed to mitigate the heading drift problem when using ZUPT. The method uses building lay- out to aid the heading measurement in Kalman filter, and it could also be combined for the initial- ization. The algorithm has been investigated with real field trials using the low cost Microstrain 3DM-GX3-25 inertial sensor, a Leica GS10 GPS receiver and a uBlox EVK-6T GPS receiver. It could be concluded that the proposed method offers a significant improvement in position accuracy for the long period, allowing pedestrian navigation for nearly40 min with mean position error less than 2.8 m. This method also has a considerable effect on the accuracy of the initialization.  相似文献   

19.
机载导弹捷联惯导系统快速传递对准方法研究   总被引:3,自引:0,他引:3  
针对速度、位置匹配方法的局限性,推导了捷联惯导速度加姿态角匹配传递对准模型,进行了机翼的挠性分析;设计了以滚动机动为主的WingRock和PopUp两种机动方式,并进行了速度加姿态角匹配对准仿真。仿真结果表明:采用所述方法,可将传递对准过程由几分钟降低到几秒钟,以毫弧度量级的精度进行对准。  相似文献   

20.
The engineering goal of the Deep Impact mission is to impact comet Tempel 1 on July 4, 2005, with a 370 kg active Impactor spacecraft (s/c). The impact velocity will be just over 10 km/s and is expected to excavate a crater approximately 20 m deep and 100 m wide. The Impactor s/c will be delivered to the vicinity of Tempel 1 by the Flyby s/c, which is also the key observing platform for the event. Following Impactor release, the Flyby will change course to pass the nucleus at an altitude of 500 km and at the same time slow down in order to allow approximately 800 s of observation of the impact event, ejecta plume expansion, and crater formation. Deep Impact will use the autonomous optical navigation (AutoNav) software system to guide the Impactor s/c to intercept the nucleus of Tempel 1 at a location that is illuminated and viewable from the Flyby. The Flyby s/c uses identical software to determine its comet-relative trajectory and provide the attitude determination and control system (ADCS) with the relative position information necessary to point the High Resolution Imager (HRI) and Medium Resolution Imager (MRI) instruments at the impact site during the encounter. This paper describes the Impactor s/c autonomous targeting design and the Flyby s/c autonomous tracking design, including image processing and navigation (trajectory estimation and maneuver computation). We also discuss the analysis that led to the current design, the expected system performance as compared to the key mission requirements and the sensitivity to various s/c subsystems and Tempel 1 environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号