首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
添加降速剂和调节RDX/AP含量是调节NEPE推进剂燃速的两种常用途径。采用水下声发射燃速测试仪、密闭燃烧器、BSF φ75 mm发动机等测试方法,研究了低燃速NEPE推进剂静态高压燃烧性能规律和发动机动态高压燃烧稳定性。研究发现,NEPE推进剂的中低压区燃速随着降速剂含量增大而显著降低,高压区燃速降低幅度相对较小,燃速-压强(r-p)曲线在15 MPa和45 MPa出现两个拐点,而且降低RDX含量对降低高压段燃速作用显著。BSF φ75 mm发动机试车结果表明,低RDX含量的C1配方(28%)最大工作压强不超过20 MPa,而高RDX含量(38%)的C4配方最大工作压强达到30 MPa。发动机稳定燃烧的最大压强随NEPE推进剂的燃速降低而下降,主要原因是低燃速推进剂铝粉燃烧效率降低使凝聚相燃烧产物含量和粒度增大。  相似文献   

2.
通过配方组分对GAP推进剂燃烧性能影响的分析,确定了影响GAP微烟推进剂燃烧性能的主要因素,并在此基础上研究了推进剂燃烧性能的变化规律,通过选择合适的增塑剂、调整AP和HMX的相对含量及AP粒度级配,可使推进剂基础配方静态燃速在6 MPa下达到10.5~12.0 mm/s,3~10 MPa下静态压强指数可降至0.40以下。  相似文献   

3.
分析了AP含量、增塑荆含量、催化剂种类、含能粘合剂体系等对NEPE推进剂燃烧性能的影响,找出了提高其燃速压强指数的有效方法.同时,采用DSC、单幅摄影、燃烧波测试等方法,研究了ZH-2催化NEPE推进荆的机理.实验结果表明,NEPE推进剂燃速压强指数提高至0.67,同时在宽压强(1.5~30 MPa)范围内消除了压强指数拐点.  相似文献   

4.
HNIW的燃烧性能研究   总被引:2,自引:0,他引:2  
张杰  杨荣杰  邹彦文 《固体火箭技术》2004,27(3):190-192,215
采用固体推进剂燃烧过程实时监测与燃速测定系统对硝基六氮杂异伍兹烷(HNIW)的燃烧性能和催化燃烧性能进了研究;在固体推进剂燃烧火焰温度分布测试系统中,采用对强度法对HNIW的燃烧火焰温度分布进行了测定。结果明,HNIW在低压强范围内(1-6MPa,7-13MPa,1-13MPa)有较高的压强指数,15-19MPa的压强范围内,存在一平台烧区。在1-13MPa的压强范围内催化剂OME能显著地降HNIW压强指数;HNIW的最高燃烧火焰温度随压强的升高近于理论燃烧温度,说明相对光强法更适合于测定高压条件高燃速推进剂的燃烧火焰温度分布。  相似文献   

5.
利用水下声发射法测试静态燃速、线性回归法计算燃速压强指数,研究了GAP/CL-20高能固体推进剂中的固含量,固体组分AP/CL-20、CL-20/Al、Al/AP相对含量等配方组成因素对其燃烧性能的影响。结果表明,固含量在一定范围内升高,使燃速和燃速压强指数均升高;AP/CL-20中AP、CL-20/Al中CL-20含量的增加,均使燃速升高,而燃速压强指数下降;Al/AP中Al含量的增加,使推进剂的燃速下降,而燃速压强指数升高。最后,对GAP/CL-20高能固体推进剂燃速的主导机制进行了简单分析。  相似文献   

6.
对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制。采用超支化SU-2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU-2助剂含量,研制出固体质量分数89%的推进剂配方。依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N、草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数。经装药试验验证,获得6.86 MPa燃速5.185 mm/s,3~11 MPa压强指数0.328,密度≥1.80 g/cm3,20℃最大拉伸强度σm≥1.0 MPa,-40℃最大伸长率εm≥61.0%;5 h使用期粘度为2625 Pa·s;综合性能优良的高固体含量低燃速HTPB推进剂。以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴。  相似文献   

7.
对HTPB三组元和四组元推进剂在2~20 MPa平均压强范围内的燃烧特性进行了实验研究。结果表明,三组元推进剂可在20 MPa以下稳定工作;压强一旦超过20 MPa,燃速压强指数将趋近于1,发动机将无法正常工作。四组元推进剂在2~20 MPa压强范围内的燃速压强指数实测在0.3左右,满足发动机使用要求。四组元推进剂稳定燃烧的最高压强临界值达到34 MPa。研究结果对超高压强固体发动机工程研制具有一定的指导意义。  相似文献   

8.
PEPA/AP膏体推进剂配方研究   总被引:5,自引:2,他引:5  
开展了PEPA/AP型膏体推进剂配方研究。结果表明,PEPA/AP膏体推进剂的流变行为遵循Ostwalld幂定律,通过增稠剂种类和含量的改变可有效调节膏体推进剂的流变参数,增调剂NJ-4可使膏体推进剂具有良好的稳定性并保持稳定的流动性。燃烧调节剂FC-1能有效改善配方的点火和燃烧性能,拓宽了燃速范围(6.86MPa下,燃速15mm/s指高到15mm/s以上),显著降低了燃速压强指数(2.94-8.83MPa下,压强指数由0.71降至0.4)。  相似文献   

9.
镁铝富燃料推进剂燃烧性能研究   总被引:3,自引:0,他引:3  
为了研究镁铝富燃料推进剂燃烧性能,采用捏合机混合物料、真空浇注、恒温固化的方法制备推进剂试样,用靶线法测试推进剂燃速(0.5~2.0 MPa),用Vieille经验公式r=apn计算压强指数。研究表明,细粒度AP含量增加,燃速逐渐增加,而压强指数先升高后降低。采用复合催化剂GFP/Fe2O3可同时提高燃速和压强指数。当催化剂质量含量为5%时,改变GFP/Fe2O3比对推进剂的燃速及压强指数的影响与氧化剂AP级配有关。对于细粒度AP含量高的配方,GFP/Fe2O3对燃速和压强指数影响较大。金属含量对燃速影响较大,对压强指数影响很小。而Mg/Al比对燃速和压强指数影响都很小。随着氧化剂中KP含量增大,燃速呈下降趋势,压强指数先升高后下降。  相似文献   

10.
采用水下声发射法测试了推进剂静态燃速,用线性回归法计算了推进剂燃速压强指数;研究了GAP/CL-20高能固体推进剂中增塑比及固体组分AP、CL-20、Al粉粒度等配方组成因素对燃烧性能的影响。研究结果表明,增塑比一定范围内的变化不会对推进剂燃烧性能产生显著影响,其燃速和燃速压强指数基本不变;CL-20粒度减小或AP粒度增加均会导致燃速不同程度的降低,Al粒度减小也会使燃速减小,但在达到一定程度后,燃速又增加;推进剂燃速压强指数随CL-20、Al粉粒度减小和AP粒度增加而减小,并对其燃烧性能的影响机制进行了简单分析。  相似文献   

11.
采用水下声发射法测试推进剂药条不同压强下的燃速,按维也里公式r=bpn计算某压强段的压强指数n,研究了含不同粒度HMX、RDX的硝胺推进剂高低压燃烧性能。结果表明,在低压段(3~9 MPa),无论粒度大小,相对无硝胺推进剂配方,n值均降低;在高压段(15~20 MPa),推进剂n值与硝胺粒度呈指数关系,粒度越小,n值越低;含硝胺的推进剂存在一个压强点,其与硝胺粒度有关,低于该压强点时推进剂燃速是细粒度硝胺高于粗粒度硝胺的,高于该压强点则反之;对20 MPa下,推进剂燃速与硝胺粒度呈非线性二项式关系,粒度越大,燃速越大。  相似文献   

12.
用水下声发射法测试推进剂药条不同压强下的燃速,按维也里公式r=bpn计算某压强段的压强指数,研究了催化剂辛基二茂铁(T27)、炭黑(C)和铬酸铅(Pr)不同含量及其复合使用对含细粒度HMX的硝胺推进剂高低压燃烧性能影响。结果表明,随着T27含量的提高,推进剂燃速相应提高,T27降低高压段压强指数,在低压段反而增大;C、Pr对推进剂的高压燃速影响不明显;随着C含量的增加,低压段压强指数降低,高压段先增加后降低,降低效果非常明显;Pr使低压段压强指数稍有降低,高压段压强指数反而升高;T27、C、Pr催化剂复合使用对高低压燃速无协同效应,对降低低压段压强指数无协同效应,在对降低高压段压强指数,具有协同效应,高压段压强指数可降低为0.359 9。  相似文献   

13.
AP-CMDB推进剂燃速压强指数的变化分析与辨识   总被引:2,自引:0,他引:2  
采用燃烧模型分析了AP-CMDB推进剂的燃速压强指数与推进剂配方组成和火箭发动机燃烧室压强之间的耦合关系.指出了该推进剂的燃速压强指数随AP颗粒和双基母体的燃速差而变化,对于确定配方组成的AP-CMDB推进剂,则该指数将主要随压强而变化,且近似呈对数关系。采用C-K法对特定配方进行了压强指数辨识,辨识结果能够较准确地预示脉冲推力器的内弹道性能。  相似文献   

14.
开展了AP含量、粒度和HMX粒度、胺类化合物、有机化合物RTA和RTJ对推进剂燃烧性能的影响研究,并对RTJ/RTA组合催化剂在推进剂中的作用机理进行了初步分析。结果表明,配方中加入RTJ/RTA组合催化剂,实现了降低4、17.5 MPa燃速的同时降低低压段、高压段压强指数,通过DSC研究表明,RTJ/RTA对AP的分解有抑制作用。通过合理调节AP/HMX的相对含量、AP粒度和HMX的粒度以及采用RTJ/RTA组合催化剂,得到了固体含量为80%的低燃速配方。  相似文献   

15.
针对高燃速推进剂的发展需求,筛选出一种成本较低的二茂铁型碳硼烷衍生物TPT-01,研究了其作为燃速催化剂对高燃速丁羟(HTPB)固体推进剂工艺性能、燃烧性能、安全性能的影响及迁移性情况。结果表明,添加6%TPT-01的HTPB推进剂药浆粘度较低,工艺性能良好;HTPB推进剂药浆及成品药安全性能良好;HTPB推进剂6.86 MPa下燃速由24.2 mm/s提高至49.6 mm/s, 6.86~15 MPa的静态燃速压强指数为0.330;此外,TPT-01在HTPB推进剂中的迁移性低于辛基二茂铁,有利于HTPB推进剂的燃烧稳定性和界面粘接性能;相较于辛基二茂铁和正己基碳硼烷NHC物理掺混使用,TPT-01是一种效果更好的燃速催化剂。  相似文献   

16.
硝胺丁羟推进剂高、低压燃烧性能研究   总被引:1,自引:0,他引:1  
通过几种燃速调节剂对含奥克托金(HMX)的丁羟橡胶复合推进剂高,低压的燃烧性能影响实验研究,结果表明,二茂铁衍生物(T27)能有效调节推进剂燃速和降低高,低压段的压强指数,复合燃速调节剂(T27+CB),并可消除高压段出现的燃速突变现象,该结果可为单室双推力发动机推进剂燃速设计提参考。  相似文献   

17.
研究了LA铅盐、GT铜盐及其碳黑复合物对硝胺/叠氮推进剂燃烧性能的影响。结果表明:GT铜盐可提高叠氮/硝胺推进剂的燃速,质量分数1%的GT铜盐能提高推进剂燃速1.5~2.4 mm/s;LA铅盐、GT铜盐及其碳黑复合物可降低叠氮/硝胺推进剂压强9~19 MPa下的压强指数,推进剂中加入质量分数3%的该复合催化剂,压强9~...  相似文献   

18.
利用DSC-TG联用和燃速测试等方法,从降低CMDB推进剂和AP类复合推进剂压强指数的燃速调节剂中,筛选出了纳米PbO、QC、C及SEA、Fe2O3、Co3O4等燃速调节剂,并考察了这些燃速调节剂对NEPE推进剂燃烧性能的影响。通过分析两类燃速调节剂发挥作用的主要压强区间及其对推进剂燃速的影响趋势,对两类燃速调节剂进行了复配研究。试验结果表明,复合调节剂ZH-2(由纳米过渡金属氧化物、铅/铜盐等复配而成)使NEPE推进剂高压(10~25 MPa)燃速压强指数由0.78降低至0.62,而且在宽压强范围内消除了压强指数的拐点。  相似文献   

19.
含偶氮四唑胍的RDX-CMDB推进剂的燃烧性能和热行为研究   总被引:1,自引:0,他引:1  
蔚红建  王琼  陈佳宏 《固体火箭技术》2012,35(2):216-220,226
采用浇铸工艺制备了GZT部分取代RDX的系列RDX-CMDB推进剂样品。研究了GZT对不含催化剂的RDX-CMDB推进剂的燃速、压强指数及燃烧火焰结构等燃烧性能的影响,并采用TG-DTG和DSC实验,初步研究了含GZT的RDX-CMDB推进剂的热行为。结果发现,GZT对推进剂的火焰温度、火焰的暗区厚度、燃面上的亮点数目和燃烧表面对凝聚相的温度梯度等都呈现一定规律性的影响;在1~10 MPa范围内,GZT使RDX-CMDB推进剂的燃速升高,压强指数降低。热行为研究表明,加入GZT时,推进剂的DSC曲线上出现一个单独的放热分解峰,对应TG曲线上也表现出一个单独的失重过程。  相似文献   

20.
利用固体火箭发动机离心试验方法,研究了低燃速(4 mm/s,4 MPa)、高铝粉含量的HTPB复合推进剂在过载情况下的燃烧加速度敏感性。试验分2组进行,第1组试验发动机平均工作压强为4 MPa,第2组为12 MPa,分别在0、5gn、8gn、15gn离心加速度条件下进行试验。通过对试验机理和试验数据分析发现,此类HTPB复合推进剂的燃速对过载加速度非常敏感。在较低加速度情况下,垂直于加速度的燃面处燃速出现了增加;同一压强(4 MPa)下,在0~15gn范围内,燃速与加速度近似呈线性关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号