首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
A distributed detection system consisting of a number of local detectors and a fusion center is considered. Each detector makes a decision for the underlying binary hypothesis testing problem based on its own observation and transmits its decision to the fusion center where the global decision is derived. The local decision rules are assumed to be given, but the local decisions are correlated. The correlation is generally characterized by a finite number of conditional probabilities. The optimum decision fusion rule in the Neyman-Pearson sense is derived and analyzed. The performance of the distributed detection system versus the degree of correlation between the local decisions is analyzed for a correlation structure that can be indexed by a single parameter. System performance as well as the performance advantage of using a larger number of local detectors degrade as the degree of correlation between local decisions increases  相似文献   

2.
Binary parallel distributed-detection architectures employ a bank of local detectors to observe a common volume of surveillance, and form binary local decisions about the existence or nonexistence of a target in that volume. The local decisions are transmitted to a central detector, the data fusion center (DEC), which integrates them to a global target or no target decision. Most studies of distributed-detection systems assume that the local detectors are synchronized. In practice local decisions are made asynchronously and the DFC has to update its global decision continually. In this study the number of local decisions observed by the central detector within any observation period is Poisson distributed. An optimal fusion rule is developed and the sufficient statistic is shown to be a weighted sum of the local decisions collected by the DFC within the observation interval. The weights are functions of the individual local detector performance probabilities (i.e., probabilities of false alarm and detection). In this respect the decision rule is similar to the one developed by Chair and Varshney for the synchronized system. Unlike the Chair-Varshney rule, however, the DFC's decision threshold in the asynchronous system is time varying. Exact expressions and asymptotic approximations are developed for the detection performance with the optimal rule. These expressions allow performance prediction and assessment of tradeoffs in realistic decision fusion architectures which operate over modern communication networks  相似文献   

3.
Blind adaptive decision fusion for distributed detection   总被引:3,自引:0,他引:3  
We consider the problem of decision fusion in a distributed detection system. In this system, each detector makes a binary decision based on its own observation, and then communicates its binary decision to a fusion center. The objective of the fusion center is to optimally fuse the local decisions in order to minimize the final error probability. To implement such an optimal fusion center, the performance parameters of each detector (i.e., its probabilities of false alarm and missed detection) as well as the a priori probabilities of the hypotheses must be known. However, in practical applications these statistics may be unknown or may vary with time. We develop a recursive algorithm that approximates these unknown values on-line. We then use these approximations to adapt the fusion center. Our algorithm is based on an explicit analytic relation between the unknown probabilities and the joint probabilities of the local decisions. Under the assumption that the local observations are conditionally independent, the estimates given by our algorithm are shown to be asymptotically unbiased and converge to their true values at the rate of O(1/k/sup 1/2/) in the rms error sense, where k is the number of iterations. Simulation results indicate that our algorithm is substantially more reliable than two existing (asymptotically biased) algorithms, and performs at least as well as those algorithms when they work.  相似文献   

4.
An optimal data fusion rule is derived for an m-ary detection problem. Each detector determines a local decision using a local decision rule and transmits the local decision to the fusion center. Considering the reliability of local detectors, local decisions are combined to produce the final decision. In this study, based upon the maximum posterior probability concept, optimal decision rules for m-ary detection problems are proposed for the local detector and the data fusion center  相似文献   

5.
王国宏  毛士艺 《航空学报》1998,19(Z1):25-29
在假定各局部检测器的决策规则已经给定以及在Bhatacharyya距离最大的意义下,对多传感器融合系统中的决策空间优化划分设计进行了研究。首先基于Bhatacharyya距离准则,把对整个系统决策空间的优化划分解耦为分别对各局部检测器决策空间的优化划分;然后从理论上证明了这种划分设计在最大Bhatacharyya距离意义下的最优性,以及这种基于最大Bhatacharyya距离准则进行优化划分设计的合理性;最后,通过对瑞利起伏环境下信号检测融合问题的数值计算表明,本文方法的性能优于基于J-散度方法的性能。  相似文献   

6.
In a decentralized detection scheme, several sensors perform a binary (hard) decision and send the resulting data to a fusion center for the final decision. If each local decision has a constant false alarm rate (CFAR), the final decision is ensured to be CFAR. We consider the case that each local decision is a threshold decision, and the threshold is proportional, through a suitable multiplier, to a linear combination of order statistics (OS) from a reference set (a generalization of the concept of OS thresholding). We address the following problem: given the fusion rule and the relevant system parameters, select each threshold multiplier and the coefficients of each linear combination so as to maximize the overall probability of detection for constrained probability of false alarm. By a Lagrangian maximization approach, we obtain a general solution to this problem and closed-form solutions for the AND and OR fusion logics. A performance assessment is carried on, showing a global superiority of the OR fusion rule in terms of detection probability (for operating conditions matching the design assumptions) and of robustness (when these do not match). We also investigate the effect of the hard quantization performed at the local sensors, by comparing the said performance to those achievable by the same fusion rule in the limiting case of no quantization  相似文献   

7.
A distributed radar detection system that employs binary integration at each local detector is studied. Local decisions are transmitted to the fusion center where they are combined to yield a global decision. The optimum values of the two thresholds at each local processor are determined so as to maximize the detection probability under a given probability of false alarm constraint. Using an important channel model, performance comparisons are made to determine the integration loss  相似文献   

8.
This paper considers optimization of distributed detectors under the Bayes criterion. A distributed detector consists of multiple local detectors and a fusion center that combines the local decision results to obtain a final decision. Introduced first are distributional distance measures, the mutual information (MI) and the conditional mutual information (CMI), that are obtained by applying information theoretic concepts to detection problems. Error bound analyses show that these distance measures approximate the Bayesian probability of error better than the conventional ones regardless of the operational environments. Then, a new optimization technique is proposed for distributed Bayes detectors. The method uses the distributional distances instead of the original Bayes criterion to avoid the complexity barrier of the optimization problem. Numerical examples show that the proposed distance measures yield solutions far better than the existing ones  相似文献   

9.
The authors develop the theory of CA-CFAR (cell-averaging constant false-alarm rate) detection using multiple sensors and data fusion, where detection decisions are transmitted from each CA-CFAR detector to the data fusion center. The overall decision is obtained at the data fusion center based on some k out of n fusion rule. For a Swerling target model I embedded in white Gaussian noise of unknown level, the authors obtain the optimum threshold multipliers of the individual detectors. At the data fusion center, they derive an expression for the overall probability of detection while the overall probability of false alarm is maintained at the desired value for the given fusion rules. An example is presented showing numerical results  相似文献   

10.
Quickest detection procedures are techniques used to detect sudden or abrupt changes (also called disorders) in the statistics of a random process. The goal is to determine as soon as possible that the change occurred, while at the same time minimizing the chance of falsely signaling the occurrence of a disorder before the change. In this work the distributed quickest detection problem when the disorder occurs at an unknown time is considered. The distributed local detectors utilize a simple summing device and threshold comparator, with a binary decision at the output. At the fusion center, the optimal maximum likelihood (ML) procedure is analyzed and compared with the more practical Page procedure for quickest detection. It is shown that the two procedures have practically equivalent performance. For the important case of unknown disorder magnitudes, a version of the Hinkley procedure is also examined. Next, a simple method for choosing the thresholds of the local detectors based on an asymptotic performance measure is presented. The problem of selecting the local thresholds usually requires optimizing a constrained set of nonlinear equations; our method admits a separable problem, leading to straightforward calculations. A sensitivity analysis reveals that the resulting threshold settings are optimal for practical purposes. The issue of which sample size to use for the local detectors is investigated, and the tradeoff between decision delay and communication cost is evaluated. For strong signals, it is shown that the relative performance deteriorates as the sample size increases, that is, as the system cost decreases. Surprisingly, for the weak signal case, lowering the system cost (increasing the sample size) does not necessarily result in a degradation of performance  相似文献   

11.
We consider the decentralized detection problem, involving N sensors and a central processor, in which the sensors transmit unquantized data to the fusion center. Assuming a homogeneous background for constant false-alarm rate (CFAR) analysis, we obtain the performances of the system for the Swerling I and Swerling III target models. We demonstrate that a simple nonparametric fusion rule at the central processor is sufficient for nearly optimum performance. The effect of the local signal-to-noise ratios (SNRs) on the performances of the optimum detector and two suboptimum detectors is also examined. Finally, we obtain a set of conditions, related to the SNRs, under which better performance may be obtained by using decentralized detection as compared with centralized detection  相似文献   

12.
Optimal Detection and Performance of Distributed Sensor Systems   总被引:1,自引:0,他引:1  
Global optimization of a distributed sensor detection system withfusion is considered, where the fusion rule and local detectors aresolved to obtain overall optimal performance. This yields coupledequations for the local detectors and the fusion center.The detection performance of the distributed system with fusionis developed. The globally optimal system performance is comparedwith two suboptimal systems. Receiver operating characteristics(ROCs) are computed numerically for the problem of detecting aknown signal embedded in non-Gaussian noise.  相似文献   

13.
Due to the growing demands for system reliability and availability of large amounts of data, efficient fault detection techniques for dynamic systems are desired. In this paper, we consider fault detection in dynamic systems monitored by multiple sensors. Normal and faulty behaviors can be modeled as two hypotheses. Due to communication constraints, it is assumed that sensors can only send binary data to the fusion center. Under the assumption of independent and identically distributed (1ID) observations, we propose a distributed fault detection algorithm, including local detector design and decision fusion rule design, based on state estimation via particle filtering. Illustrative examples are presented to demonstrate the effectiveness of our approach.  相似文献   

14.
The classical detection step in a monopulse radar system is based on the sum beam only,the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test(GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.  相似文献   

15.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   

16.
A modified form of the basic Savage statistic is considered and the performance of a modified Savage (MS) nonparametric detector using this modified statistic is derived. Also, a detector using a modified rank squared statistic (MRS) is introduced. The asymptotic relative efficiency (ARE) of the detectors is determined for chisquare, Rician, and log-normal signal fluctuations when the background noise is assumed Gaussian. The ARE performance of the generalized sign (GS) and Mann-Whitney (MW) detectors is also determined for these families of fluctuations. The ARE performance of the various detectors is then compared, and the results of a computer simulation are presented in which, for a finite number of samples, the performance of the modified detectors is compared with the performance of the GS and MW detectors. It is shown that when using a large number of reference noise samples, the ARE of the GS and MW detectors, the MRS and RS detectors, and the MS and Savage detectors are 0.75, 0.868, and 1, respectively. It is also shown that when using a finite number of reference noise samples the MS and MRS detectors can give a superior performance to that obtained with the MW detector, and that this is particularly true in the cases in which the degree of signal fluctuation is high.  相似文献   

17.
18.
The Pade approximation (PA) method is used to analyze the detection performance of single and multiple pulse radar systems operating in K-distributed clutter and thermal noise. Simple approximations for false-alarm and detection probabilities are obtained, using lower order moments for the detection decision statistic. Both envelope and squaring detector laws are considered, with noncoherent integration, for independent and correlated K clutter. The target is assumed to be pulse-to-pulse Rayleigh fading. The methods are a substantial application of the PA methods we have previously published  相似文献   

19.
The performance of multistatic-radar binomial detectors is investigated. Although conceptually similar to the well-knwn "M-out-of-N" detector frequently considered for monostatic systems, the multistatic detector must cope with false alarms generated by target et ghosting as well as by noise threshold crossings. A procedure for deriving the detection statistics of multistatic binomial detectors ors is presented. The procedure is applied to derive the detection probabilities for a spectrum of false alarm probabilities, target densities, and numbers of radar receivers.  相似文献   

20.
Importance sampling for characterizing STAP detectors   总被引:1,自引:0,他引:1  
This paper describes the development of adaptive importance sampling (IS) techniques for estimating false alarm probabilities of detectors that use space-time adaptive processing (STAP) algorithms. Fast simulation using IS methods has been notably successful in the study of conventional constant false alarm rate (CFAR) radar detectors, and in several other applications. The principal objectives here are to examine the viability of using these methods for STAP detectors, develop them into powerful analysis and design algorithms and, in the long term, use them for synthesizing novel detection structures. The adaptive matched filter (AMF) detector has been analyzed successfully using fast simulation. Of two biasing methods considered, one is implemented and shown to yield good results. The important problem of detector threshold determination is also addressed, with matching outcome. As an illustration of the power of these methods, two variants of the square-law AMF detector that are thought to be robust under heterogeneous clutter conditions have also been successfully investigated. These are the envelope-law and geometric-mean STAP detectors. Their CFAR property is established and performance evaluated. It turns out the variants have detection performances better than those of the AMF detector for training data contaminated by interferers. In summary, the work reported here paves the way for development of advanced estimation techniques that can facilitate design of powerful and robust detection algorithms  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号