首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对存在模型不确定和外部干扰的可重复使用运载器再入段姿态控制问题,提出了一种基于自适应滑模干扰观测器的递归积分滑模控制方法。首先,基于可重复使用运载器再入段姿态运动模型,建立了面向控制的模型;其次,设计了自适应滑模干扰观测器,以精准估计和补偿由模型不确定和外部干扰构成的复合干扰;然后,基于递归思想设计了一种新型递归积分滑模控制器,利用Lyapunov稳定性理论证明了闭环系统的有限时间稳定性;最后,数值仿真结果验证了该方法具有较强的鲁棒性和较快的收敛速度。  相似文献   

2.
针对导弹飞控系统存在外部干扰、执行机构故障等问题,本文运用一种鲁棒增量式动态逆被动容错控制方法,以避免主动故障诊断带来的计算效率问题,同时实现飞行姿态的可靠安全控制。针对外部干扰及执行机构故障等控制系统不确定性,建立导弹三通道姿态控制模型,基于干扰观测器对不确定性进行估计与补偿设计终端滑模控制律。为进一步增强导弹姿态控制系统的鲁棒性,给出导弹增量式动态逆容错控制律,结合终端滑模控制设计干扰补偿的增量式动态逆终端滑模控制律,并对系统残差进行分析比较。某典型全弹道姿态跟踪任务仿真表明,该方法在故障未知的情况下仍然保持姿态跟踪特性与容错能力,实现导弹姿态鲁棒精准快速控制。  相似文献   

3.
针对存在模型参数不确定以及受到外部干扰的挠性航天器的高精度姿态控制和主动振动抑制问题,根据自耦PID(auto-coupling proportional integral derivative, ACPID)控制理论提出了一种简单的自耦PD(auto-coupling proportional derivative, ACPD)控制方法.将挠性航天器姿态运动的已知和未知内部动态以及外部干扰定义为一个总扰动,进而将其等价映射为一个二阶线性扰动系统.据此构建了在复合总扰动反相激励下的受控误差系统,根据ACPID控制理论分别设计了ACPD姿态控制器和ACPD主动振动控制器,并分析了每个系统的鲁棒稳定性和抗扰动鲁棒性.仿真试验结果表明,ACPD姿态控制器对姿态角指令有较好的跟踪性能,ACPD主动振动控制器也能有效地抑制挠性附件的振动.  相似文献   

4.
针对高精度电液飞行仿真转台具有高度非线性、参数不确定和不确定非线性等特点,提出了一种基于RBF(Radial Basis Function)神经网络的非线性积分滑模鲁棒控制方法.采用自适应RBF神经网络对该系统存在的参数不确定性和不确定非线性进行补偿,从而降低滑模控制器对切换项的增益的需求,进而减小系统抖振幅值.积分滑模面的设计能消除外部干扰对系统带来的稳态误差.根据积分滑模变结构控制器的特点,将控制律分为等效控制律和到达控制律.等效控制律使系统运动于滑模面附近,到达控制律可使处于状态空间内任意初始位置的系统趋近于滑模面,并进一步通过Lyapunov方法证明了系统的渐近稳定性.实验结果表明,所提出的非线性控制器不仅能满足电液转台的高精度跟踪性能的要求,且对参数不确定性和不确定非线性具有一定的鲁棒性.  相似文献   

5.
对存在未知外界干扰、参数不确定问题的刚–液–柔多体耦合航天器姿态控制进行了研究。将液体燃料的晃动等效为球摆模型,挠性附件假设为欧拉–伯努利梁,运用拉格朗日方法建立航天器的动力学方程。将外界干扰、航天器转动惯量的参数不确定性以及液体晃动和挠性附件振动带来的耦合干扰归结为集总干扰,设计干扰观测器对其进行补偿;在干扰观测器的基础上,设计一种模糊滑模控制律。在原有的终端滑模控制基础上采用模糊控制对切换增益进行改进,达到抑制系统抖动的目的。数值仿真结果表明:所设计的模糊终端滑模控制律不仅能够实现充液挠性航天器的姿态机动,而且能够有效抑制液体晃动和挠性附件的振动,具有更好的控制性能。  相似文献   

6.
高超声速飞行器全局有限时间姿态控制方法   总被引:1,自引:1,他引:0  
以高超声速飞行器6自由度模型为研究对象,设计了一种基于终端滑模的全局有限时间姿态控制方法。在控制器设计中,通过动态逆实现对俯仰、偏航和滚转通道的解耦处理。在考虑模型不确定性和外部干扰的情况下,终端滑模变结构控制方法用于保证系统的鲁棒性。同时,通过改进指数趋近律,实现闭环系统在滑模面趋近阶段和沿滑模面滑动阶段均是有限时间收敛的。基于李雅普诺夫稳定性理论,控制器的全局有限时间收敛特性得到证明。仿真实验结果验证了高超声速飞行器全局有限时间姿态控制方法的有效性。   相似文献   

7.
飞行器无动力再入过程中,姿态受到气动及不确定干扰影响,控制模型具有强耦合、大范围参数摄动等非线性特征。针对再入飞行器姿态控制问题,结合扩张状态观测器(Extended State Observer,ESO)和自适应控制律,基于奇异摄动理论将非线性姿态控制模型分为快慢两回路,分别设计了飞行器内环和外环自适应姿态控制器,并通过 Lyapunov 稳定性理论证明控制器的稳定性。仿真结果表明,控制系统在强干扰及参数大范围摄动的情况下,具有较强的鲁棒性,能够获取良好的动态品质和跟踪性能。  相似文献   

8.
舱外机动装置姿态自适应控制研究   总被引:1,自引:1,他引:0  
舱外机动装置是一种帮助宇航员在航天器舱外活动的机动装置,航天员自身的质量特性的不确定性使得其姿态控制问题为非线性时变,并且带有不确定参数的系统的控制问题,传统的控制系统理论难以处理该问题.自适应控制指令跟踪法用于舱外机动装置的姿态控制系统以应付质量特性不确定性的影响,研究结果表明该方法可以实现对舱外机动装置姿态机动和稳定控制,具有良好的抗干扰性和控制鲁棒性,姿态控制精度达到0.5°,姿态稳定度达到0.1 °/s.   相似文献   

9.
根据多模态滑模概念,提出了一种快速非奇异终端滑模控制方法(FNTSM,Fast Nonsingular Terminal Sliding Mode),实现了非奇异终端滑模控制的全局快速收敛.多模态滑模通过设计分段切换函数,实现多个滑动模态.FNTSM的切换函数由线性滑模的切换函数和非奇异终端滑模的切换函数连接而成.当系统状态远离平衡点时,系统运行于线性滑动模态;当系统状态靠近平衡点时,系统运行于非奇异终端滑动模态.设计了切换型控制律,保证了系统的到达时间和滑动时间都是有限的.数值仿真表明:FNTSM控制与非奇异终端滑模控制、线性滑模控制相比具有快速性优点.   相似文献   

10.
本文研究具有参数不确定性和外部扰动的航天器姿态控制问题.针对修正罗德里格参数表征的航天器姿态模型提出一种有限时间时变滑模函数,在此基础上设计一种有限时间收敛的滑模姿态控制方法,并证明其稳定性,给出控制参数的设计方法.该方法在保证系统渐近稳定的前提下,不仅能够实现姿态跟踪误差在有限时间内收敛,而且能够实现姿态跟踪误差在设定的时间收敛,且全局具有滑模动态确定的系统响应.通过仿真结果验证本文提出方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号