首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Conventional synthetic aperture radar(SAR) systems cannot achieve both highresolution and wide-swath imaging simultaneously.This problem can be mitigated by employing multiple-azimuth-phases(MAPs) technology for spaceborne sliding spotlight SAR systems.However, traditional imaging algorithms have met challenges to process the data accurately, due to range model error, MAPs data reconstruction problem, high-order cross-coupling phase error and variation of Doppler parameters along the azimuth direction.Therefore, an improved imaging algorithm is proposed for solving the above problems.Firstly, a modified hyperbolic range equation(MHRE) is proposed by introducing a cubic term into the traditional hyperbolic range equation(THRE).And two curved orbit correction methods are derived based on the proposed range model.Then, a MAPs sliding spotlight data reconstruction method is introduced, which solves the spectral aliasing problem by a de-rotation operation.Finally, high-order cross-coupling phases and variation of Doppler parameters are analyzed and the corresponding compensation methods are proposed.Simulation results for point-target scene are provided to verify the effectiveness of the proposed algorithm.  相似文献   

2.
聚束SAR扩展Chirp Scaling成像算法.   总被引:5,自引:2,他引:5  
在合成孔径雷达(SAR Synthetic Aperture Radar)的成像算法中,Chrip Scaling成像算法具有计算效率高的优点,因此得到了较为广泛的应用。详细研究了子孔径扩展Chirp Scaling算法在高分辩率聚束模式SAR中的应用,包括子孔径划分和方位向处理问题,针对A.Moreira等1996年所提算法在处理聚束SAR数据时所产生的问题,给出了经过改进的适合于大斜视角处理的整个计算过程的完整表达式。在给出点目标仿真的同时,利用E-SAR实际数据对述方法进行了验证,结果对具体的兼容条带和聚束两种工作模式的SAR处理机设计具有一定的参考价值。  相似文献   

3.
《中国航空学报》2021,34(2):563-575
Spaceborne Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technology that can provide high-resolution images of the Earth’s surface on a global scale. For future SAR systems, one of the key capabilities is to acquire images with both high-resolution and wide-swath. In parallel to the evolution of SAR sensors, more precise range models, and effective imaging algorithms are required. Due to the significant azimuth-variance of the echo signal in High-Resolution Wide-Swath (HRWS) SAR, two challenges have been faced in conventional imaging algorithms. The first challenge is constructing a precise range model of the whole scene and the second one is to develop an effective imaging algorithm since existing ones fail to process high-resolution and wide azimuth swath SAR data effectively. In this paper, an Advanced High-order Nonlinear Chirp Scaling (A-HNLCS) algorithm for HRWS SAR is proposed. First, a novel Second-Order Equivalent Squint Range Model (SOESRM) is developed to describe the range history of the whole scene, by introducing a quadratic curve to fit the deviation of the azimuth FM rate. Second, a corresponding algorithm is derived, where the azimuth-variance of the echo signal is solved by azimuth equalizing processing and accurate focusing is achieved through a high-order nonlinear chirp scaling algorithm. As a result, the whole scene can be accurately focused through one single imaging processing. Simulations are provided to validate the proposed range model and imaging algorithm.  相似文献   

4.
A chirp scaling approach for processing squint mode SAR data   总被引:5,自引:0,他引:5  
Image formation from squint mode synthetic aperture radar (SAR) is limited by image degradations caused by neglecting the range-variant filtering required by secondary range compression (SRC). Introduced here is a nonlinear FM chirp scaling, an extension of the chirp scaling algorithm, as an efficient and accurate approach to range variant SRC. Two methods of implementing the approach are described. The nonlinear FM filtering method is more accurate but adds a filtering step to the chirp scaling algorithm, although the extra computation is less than that of a time domain residual compression filter. The nonlinear FM pulse method consists of changing the phase modulation of the transmitted pulse, thus avoiding an increase in computation. Simulations show both methods significantly improve resolution width and sidelobe level, compared with existing SAR processors for squint angles above 10 deg for L-band and 20 deg for C-band  相似文献   

5.
Modeling and a Correlation Algorithm for Spaceborne SAR Signals   总被引:3,自引:0,他引:3  
A mathematical model of a spaceborne synthetic aperture radar (SAR) response is presented. The associated SAR system performance, in terms of the resolution capability, is also discussed. The analysis of spaceborne SAR target response indicates that the SAR correlation problem is a two-dimensional one with a linear shift-variant response function. A new digital processing algorithm is proposed here in order to realize an economical digital SAR correlation system. The proposed algorithm treats the two-dimensional correlation by a combination of frequency domain fast correlation in the azimuth dimension and a time-domain convolver type of operation in the range dimension. Finally, digitally correlated SEASAT satellite SAR imagery is used in an exemplary sense to validate the SAR response model and the new digital processing technique developed.  相似文献   

6.
孟亭亭  谭鸽伟  李梦慧  杨晶晶  李彪  徐熙毅 《航空学报》2020,41(7):323741-323741
针对具有三维速度和加速度的曲线运动轨迹合成孔径雷达(SAR),传统的斜距模型无法精确描述其运动特性,曲线历程增加了距离走动现象和方位向时间的高次项,使二维耦合现象更为复杂。本文提出了一种考虑载体平台三维速度和加速度的Chirp Scaling算法以解决曲线运动轨迹SAR成像问题。首先根据运动方程建立斜距表达式,然后对其进行Chebyshev近似,并构造其等效双曲方程形式的斜距模型,推导了具有空变性的距离徙动函数,Chirp Scaling因子以及适用于曲线轨迹的Chirp Scaling成像算法。仿真结果证实了此扩展的等效斜距模型和Chirp Scaling算法在大合成孔径时间下的有效性,并给出了三维加速度的边界值。  相似文献   

7.
在聚束合成孔径雷达(SAR)自聚焦处理时,残留距离徙动(RRCM)必须在自聚焦处理之前完全去除,否则 将会严重降低自聚焦的性能。本文提出了一种基于二维逆滤波的自聚焦算法,该算法在补偿相位误差的同时也补 偿掉距离和方位的二维耦合相位,消除了RRCM对自聚焦的影响,提高了逆滤波自聚焦算法的性能。最后通过实 测数据处理验证了本文提出的二维逆滤波自聚焦算法的有效性。  相似文献   

8.
A new fourth-order signal aperture radar (SAR) processing algorithm has been developed for a general satellite-Earth relative motion. The two-dimensional exact transfer function (ETF) is calculated and range-variant phase corrections have been calculated in order to process many azimuth lines per block. The ETF together with the phase corrections has been called the fourth-order EETF (extended ETF). It is also shown that a fourth-order EETF is necessary to process high quality images from spaceborne SAR with long integration times with spatial resolution around 1 m. The algorithm is fast and is anticipated to have good phase preservation properties  相似文献   

9.
Extended PGA for range migration algorithms   总被引:2,自引:0,他引:2  
The phase gradient autofocus (PGA) algorithm is extended to work for synthetic aperture radar (SAR) spotlight images processed with range migration (w-k) algorithms. Several pre-processing steps are proposed for aligning the range-compressed phase-history data needed for successful autofocusing of the data. The proposed algorithm gave good results for both data with large point targets and data without point targets.  相似文献   

10.
杨鸣冬  朱岱寅 《航空学报》2016,37(3):984-996
滑动聚束合成孔径雷达(SAR)是一种新兴的成像模式,既可以提高方位向分辨率又能够扩展成像范围。其数据处理时需要考虑两个关键问题:一是系统脉冲重复频率(PRF)不足,方位向信号发生混叠;二是合成孔径长度的增加使运动误差的影响更为突出,运动补偿(MOCO)精度要求提高。基于子孔径技术,提出了一种改进的高分辨率成像算法。划分子孔径克服了PRF不足的问题;子孔径数据处理采用结合视线(LOS)方向运动补偿的Omega-K算法,实现更高精度的运动补偿,提高了聚焦质量。最终的方位向分辨率达到0.1 m,具有实际工程应用价值。点目标仿真和实测数据处理验证了算法的有效性。  相似文献   

11.
A new concept of spaceborne synthetic aperture radar (SAR) implementation has recently been proposed - the constellation of small spaceborne SAR systems. In this implementation, several formation-flying small satellites cooperate to perform multiple space missions. We investigate the possibility to produce high-resolution wide-area SAR images and fine ground moving-target indicator (GMTI) performance with constellation of small spaceborne SAR systems. In particular, we focus on the problems introduced by this particular SAR system, such as Doppler ambiguities, high sparseness of the satellite array, and array element errors. A space-time adaptive processing (STAP) approach combined with conventional SAR imaging algorithms is proposed which can solve these problems to some extent. The main idea of the approach is to use a STAP-based method to properly overcome the aliasing effect caused by the lower pulse-repetition frequency (PRF) and thereby retrieve the unambiguous azimuth wide (full) spectrum signals from the received echoes. Following this operation, conventional SAR data processing tools can be applied to focus the SAR images fully. The proposed approach can simultaneously achieve both high-resolution SAR mapping of wide ground scenes and GMTI with high efficiency. To obtain array element errors, an array auto-calibration technique is proposed to estimate them based on the angular and Doppler ambiguity analysis of the clutter echo. The optimizing of satellite formations is also analyzed, and a platform velocity/PRF criterion for array configurations is presented. An approach is given to make it possible that almost any given sparse array configuration can satisfy the criterion by slightly adjusting the PRF. Simulated results are presented to verify the effectiveness of the proposed approaches.  相似文献   

12.
Modified Frequency Scaling Algorithm for FMCW SAR Data Processing   总被引:1,自引:0,他引:1  
This paper presents a modified frequency scaling algorithm for frequency modulated continuous wave synthetic aperture radar (FMCW SAR) data processing. The relative motion between radar and target in FMCW SAR during reception and between transmission and reception will introduce serious dilation in the received signal. The dilation can cause serious distortions in the reconstructed images using conventional signal processing methods. The received signal is derived and the received signal in range-Doppler domain is given. The relation between the phase resulting from antenna motion and the azimuth frequency is analyzed. The modified frequency scaling algorithm is proposed to process the received signal with serious dilation. The algorithm can effectively eliminate the impact of the dilation. The algorithm performances are shown by the simulation results.  相似文献   

13.
Airborne synthetic aperture radar (SAR) has the capability of high-resolution, and spaceborne SAR has the capability of wide-swath. Inspired by recent advances in near-space defined as the region between 20 km and 100 km, this paper conceptually designed near-space vehicle-borne SAR. The near-space vehicle-borne SAR has the synthetical advantages of the satellite and airplane platforms. By placing SAR transmitter or receiver in near-space vehicles, many functions that are currently performed with satellites or airplanes could be performed in low cost way. These advantages make simultaneous high-resolution and wide-swath SAR imaging possible. As such, this paper focuses on the role of near-space vehicle for high-resolution and wide-swath SAR imaging, and deals with conceptual performance, as opposed to technological implementation. The concepts, models and processing algorithms are provided. To further suppress the azimuth ambiguities and extend swath width, multiple beams in azimuth is applied. Furthermore, an example near-space vehicle-borne SAR is designed. It is shown that the use of cost effective near-space vehicles can provide the solutions that were previously thought to be out of reach for remote sensing scientists and customers.  相似文献   

14.
调频连续波SAR改进的频率尺度变换算法(英文)   总被引:1,自引:0,他引:1  
本文提出了一种调频连续波SAR改进的频率尺度变换算法。调频连续波SAR在运动过程中持续不断地发射和接收信号,这种运动导致了回波信号的伸缩,对波前重建产生了严重的影响。推导了回波信号模型,给出了信号的距离-多普勒域表达式,分析了由于天线不断运动而导致的相位变化与方位向频率之间的关系。改进的频率尺度变换算法补偿了这种相位变化,实现了目标的精确成像,仿真结果表明了分析的正确性和算法的有效性。  相似文献   

15.
鲍悦  陈俊宇  施天玥  毛新华 《航空学报》2021,42(6):324502-324502
高分宽幅(HRWS)数字波束形成(DBF)合成孔径雷达(SAR)利用多通道空间采样代替部分时域采样,可以有效缓解SAR成像时高分辨率与宽测绘带间的矛盾,具有重要的军用和民用价值。现有常规DBF-SAR成像算法都假设雷达传感器相对位置精确已知,实际应用中受传感器位置测量误差影响,由位置不精确导致的相位误差会严重影响DBF-SAR高精度成像能力。在极坐标格式算法(PFA)框架下,推导了DBF-SAR成像处理后,残留相位误差的解析模型,分析了该误差对成像质量的影响。依据推导的先验相位误差解析结构模型,提出了一种基于图像对比度最优化准则的自聚焦算法。新算法通过引入先验相位结构信息,极大降低了待估参数的空间维数,可以同时改善自聚焦算法的参数估计精度和计算效率。数据处理结果验证了理论分析的正确性和所提算法的有效性。  相似文献   

16.
Robust SVA method for every sampling rate condition   总被引:2,自引:0,他引:2  
Linear apodization, or data weighting, is the traditional procedure to improve sidelobe levels in a finite sampled signal at the expense of resolution. New apodization methods, such as spatially variant apodization (SVA), apply nonlinear filtering to the signal in order to completely remove sidelobes without any loss of resolution. However, the results are strongly influenced by signal sampling rate. Some variations which improve results have been previously published, but sidelobe cancellation gets worse since sampling frequency is not settled at Nyquist (or a multiple). This paper presents a new and efficient technique based on SVA that drastically reduces sidelobe levels for every sampling rate condition. The algorithm is, essentially, a parameter optimization of a variant filter for each pixel of the image. A one-dimensional case and a two-dimensional generalization are presented, as well as some applications to target detection capability in a synthetic aperture radar (SAR) system.  相似文献   

17.
Synthetic Aperture Radar (SAR) is a well-proven imaging technique for remote sensing of the Earth. However, conventional SAR systems are not capable of fulfilling the increasing demands for improved spatial resolution and wider swath coverage. To overcome these inherent limitations, several innovative techniques have been suggested which employ multiple receive-apertures to gather additional information along the synthetic aperture. These digital beamforming (DBF) on receive techniques are reviewed with particular emphasis on the multi-aperture signal processing in azimuth and a multi-aperture reconstruction algorithm is presented that allows for the unambiguous recovery of the Doppler spectrum. The impact of Doppler aliasing is investigated and an analytic expression for the residual azimuth ambiguities is derived. Further, the influence of the processing on the signal-to-noise ratio (SNR) is analyzed, resulting in a pulse repetition frequency (PRF) dependent factor describing the SNR scaling of the multi-aperture beamforming network. The focus is then turned to a complete high-resolution wide-swath SAR system design example which demonstrates the intricate connection between multi-aperture azimuth processing and the system architecture. In this regard, alternative processing approaches are compared with the multi-aperture reconstruction algorithm. In a next step, optimization strategies are discussed as pattern tapering, prebeamshaping-on-receive, and modified processing algorithms. In this context, the analytic expressions for both the residual ambiguities and the SNR scaling factor are generalized to cascaded beamforming networks. The suggested techniques can moreover be extended in many ways. Examples discussed are a combination with ScanSAR burst mode operation and the transfer to multistatic sparse array configurations.  相似文献   

18.
Nonlinear apodization for sidelobe control in SAR imagery   总被引:2,自引:0,他引:2  
Synthetic aperture radar (SAR) imagery often requires sidelobe control, or apodization, via weighting of the frequency domain aperture. This is of particular importance when imaging scenes containing objects such as ships or buildings having very large radar cross sections. Sidelobe improvement using spectral weighting is invariably at the expense of mainlobe resolution presented here is a class of nonlinear operators which significantly reduce sidelobe levels without degrading mainlobe resolution implementation is via sequential nonlinear operations applied to complex-valued (undetected) SAR imagery. SAR imaging is used to motivate the concepts developed in this work. However, these nonlinear apodization techniques have potentially broad and far-ranging applications in antenna design, sonar, digital filtering etc., i.e., whenever data can be represented as the Fourier transform of a finite-aperture signal  相似文献   

19.
Selected new methods and applications of non-linear apodization for irregularly-shaped and parse coherent apertures and arrays are presented. The benefits include unproved impulse response performance, i.e., reduced peak sidelobes and integrated sidelobe power, along with improved mainlobe resolution, compared to classic windowing techniques. Nonlinear apodization (NLA) techniques can also serve as powerful engines for effective superresolution and bandwidth extrapolation of coherent data for filling sparse apertures. The sparse aperture filling property of superresolution algorithms for radar data forms the basis for a new concept which is introduced here: synthetic multiple aperture radar technology (SMART). Increased swath and/or reduced antenna size are some of the benefits postulated for SMART applied to synthetic aperture radar (SAR) systems. The benefits of these new methods and applications for nonlinear apodization are then demonstrated for two specific applications: 1) sidelobe control for Y-type synthetic aperture radiometers, such as the European Soil Moisture and Ocean Salinity (SMOS) system (Kerr et al.) and JPL's proposed GeoSTAR (Lambrigsten) concept; and, 2) filling of sparse synthetic aperture radar data by exploiting the bandwidth extrapolation properties of nonlinear apodization based superresolution techniques. The methods that have been developed and demonstrated herein have potential application to a wide range of passive and active microwave remote sensing and radar systems.  相似文献   

20.
Trajectory deviations in airborne SAR: analysis and compensation   总被引:3,自引:0,他引:3  
This paper concerns the analysis and compensation of trajectory deviations in airborne synthetic aperture radar (SAR) systems. Analysis of the received data spectrum is carried out with respect to the system geometry in the presence of linear, sinusoidal, and general aircraft displacements. This shows that trajectory deviations generally produce spectral replicas along the azimuth frequency that strongly impair the quality of the focused image. Based on the derived model, we explain the rationale of the motion compensation (MOCO) strategy that must be applied at the SAR processing stage in order to limit the resolution loss. To this end aberration terms are separated into range space invariant and variant components. The former can be accounted for either in a preprocessing step or efficiently at range compression stage. The latter needs a prior accommodation of range migration effect. We design the procedure for efficient inclusion of the MOCO within a high precision scaled FT based SAR processing algorithm. Finally, we present results on simulated data aimed at validating the whole analysis and the proposed procedure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号