首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   

2.
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 m3 and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.  相似文献   

3.
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed.  相似文献   

4.
As an initial effort to study the evolution of the Venus atmosphere, the influence of the solar wind density and the interplanetary magnetic field (IMF) x component (the x-axis points from Venus towards the Sun) on the O+ ion escape rate from Venus is investigated using a three-dimensional quasi-neutral hybrid (HYB-Venus) model. The HYB-Venus model is first applied to a case of the high-density (100 cm−3) solar wind interaction with Venus selected from the Pioneer Venus Orbiter observations to demonstrate its capability for the study. Two sets of simulations with a wide range of solar wind densities and different IMF x components are then performed. It is found that the O+ ion escape rate increases with increasing solar wind density. The O+ ion escape rate saturates when the solar wind density becomes high (above 100 cm−3). The results also suggest that the IMF x component enhances the O+ ion escape rate, given a fixed IMF component perpendicular to the x-axis. Finally, the results imply a higher ion loss rate for early-Venus, when solar conditions were dramatically different.  相似文献   

5.
This paper describes the results of ongoing technology development activities for a Venus spherical superpressure balloon capable of flying for long durations (30 days) in the middle cloud layer at an altitude of 55.5 km. Data is presented from a successful aerial deployment and inflation flight experiment on a 5.5 m diameter prototype balloon conducted at a 2.5 km altitude above the Earth. Although the balloon in that test was not released for free flight, all other steps in the deployment and inflation process were successfully executed. Experimental and computational results are also presented from an investigation of the stress concentration phenomenon at the junction of the metal end fitting and fabric end cap of the prototype Venus balloon. Good agreement was found between the simulation and experimental results and a stress concentration factor of 1.55 determined for this end cap design compared to the expectations of thin membrane theory. Finally, results are presented for a new, second-generation Venus balloon material utilizing Aclar™ film instead of Teflon. Optical property and sulfuric acid tolerance data are presented for this material based on laboratory testing of samples.  相似文献   

6.
The pattern of the magnetic field/plasma convection can be, to some extent, recovered from the magnetic field measurements by employing either theoretical or numerical models. We use the MAG/ER day-time measurements of the magnetic field at the altitudes from 90 to 180 km during the elliptical orbits of MGS. Analysis of the altitude variation of the characteristics of the large-scale magnetic fields, which were measured some distance away from strong crustal magnetic anomalies, is summarized. The low density of the Martian atmosphere together with the crustal magnetization result in critical differences in plasma convection which are followed by remarkable differences of the magnetic field features within the ionosphere of Venus and Mars (even in its northern hemisphere where the crustal magnetization is, on the average, low) and distribution of currents.  相似文献   

7.
This study presents comparisons between the Pioneer Venus Orbiter (PVO) magnetometer (OMAG) observations and the HYB-Venus hybrid simulation code. The comparisons are made near periapsides of four PVO orbits using the full resolution PVO/OMAG data. Also, the statistics of the solar wind and interplanetary magnetic field (IMF) conditions at Venus are studied using the PVO interplanetary dataset. The statistics include the histograms and the probability density maps of the selected upstream parameters. The confidence intervals derived from the upstream statistics demonstrate the nominal simulation input parameter space. Moreover, the probability density maps give the dependencies between the upstream parameters. The comparisons between the simulation code and the data along the spacecraft trajectory show that the basic, large scale, trends seen in the magnetic field can be understood by the current simulation runs. The discrepancies between the simulation and the data were found to arise at low altitudes close to the planetary ionosphere in the region which cannot be resolved in detail by the grid size of the runs.  相似文献   

8.
The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.  相似文献   

9.
Over four Venus years of low altitude nightside PVO magnetometer observations are used to establish a new upper limit for the magnetic moment of Venus. Improvements over previous studies include data coverage and new instrument calibration information. The upper limit on an internal dipole moment is determined to be 8.4 × 1010 T m3.  相似文献   

10.
We have installed the first MAGDAS magnetometer at Fayum in Egypt. The ambient temperature in the initial sensor house varied more than ±4 °C in one day (24 h period). This variation made the magnetic data useless. To correct this problem, (1) a new sensor house was re-constructed which reduced the diurnal variation to less than ±1 °C, and (2) the “Uozumi Temperature Correction Method” was introduced. As a result, good data is now arriving in real time at a central facility in Japan.  相似文献   

11.
Theoretical models of the ionosphere of Venus have been constructed in the past without due consideration of the fact that the ionosphere is sometimes magnetized. This paper examines some differences between the magnetized and unmagnetized dayside Venus ionosphere using the Pioneer Venus Orbiter Langmuir probe and magnetometer data. Particular attention is given to the evaluation of the altitude profiles of the thermal electron heating and comparison of the magnitude of the magnetic force(¯vׯB) ׯB with other forces in the ionosphere. Several examples illustrate how heating profiles are different in the magnetized ionosphere with effective heating below ~200 km altitude reduced by orders of magnitude compared to the field-free ionosphere. The force associated with the magnetic field is comparable to other forces in the magnetized ionosphere. The measured plasma density, electron temperature and magnetic field thus suggest that large-scale magnetic fields should be included in future ionosphere models.  相似文献   

12.
Geomagnetic data collected during magnetic storm over magnetically conjugate pair (according to IGRF 2000) of high latitude stations viz., Maitri (70° 45′ S, 11° 42′ E) and Tromso (69° 40′ N, 18° 56′ E) reveal that amplitudes of Pc6 pulsation characteristically differ. The amplitude obtained from horizontal magnetic field for the Pc6 pulsation frequency range between 0.6 and 1.6 mHz significantly differs in time corresponding to peak amplitude. The relative differences in its time of occurrence found to gradually increase around initial phase of storm and remain exactly out of phase at peak amplitude of storm. Thence, it is found to be in agreement in phase gradually until storm unwinds. This indicates that simultaneous amplitude of Pc6 pulsation at conjugate pair of stations and its time of occurrence could be a key factor to infer storm arrivals somewhat prior to its peak effects. The emphasize remains on prediction of storm arrivals only by utilizing ground based magnetometer observations. However, it is necessary to understand differences on the basis of weak, moderate, strong, and super strong cases and more exactly how they behave along the line of magnetic Meridian. Nevertheless, the analysis implies that geo-effective magnetic ejecta/clouds/CIRs/sheaths/CMEs/ICMEs giving rise to geomagnetic storm can be predicted ahead of its peak effects by having magnetometer data over conjugate locations.  相似文献   

13.
The observed magnetic field configuration in the Venus magnetosheath contains information about the solar wind mass-loading processes occurring as a result of the extension of the neutral atmosphere into the magnetosheath. In this paper, magnetic field signatures of various mass-loading processes are discussed and experimental results from the Pioneer Venus Orbiter magnetometer experiment are examined for evidence of these signatures. The data suggest that the ?VXB acceleration process, stochastic pickup of ionospheric ions, and JXB force “scavenging” at the ionopause all occur at various times.  相似文献   

14.
The Mars Express spacecraft carries a low-frequency radar called MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) that is designed to study the subsurface and ionosphere of Mars. In this paper, we give an overview of the ionospheric sounding results after approximately one year of operation in orbit around Mars. Several types of ionospheric echoes are commonly observed. These include vertical echoes caused by specular reflection from the horizontally stratified ionosphere; echoes from a second layer in the topside ionosphere, possibly associated with O+ ions; oblique echoes from upward bulges in the ionosphere; and a variety of other echoes that are poorly understood. The vertical echoes provide electron density profiles that are in reasonable agreement with the Chapman photo-equilibrium model of planetary ionospheres. On the dayside of Mars the maximum electron density is approximately 2 × 105 cm−3. On the nightside the echoes are often very diffuse and highly irregular, with maximum electron densities less than 104 cm−3. Surface reflections are sometimes observed in the same frequency range as the diffuse echoes, suggesting that small isolated holes exist in the nightside ionosphere, possibly similar to those that occur on the nightside of Venus. The oblique echoes arise from upward bulges in the ionosphere in regions where the crustal magnetic field of Mars is strong and nearly vertical. The bulges tend to be elongated in the horizontal direction and located in regions between oppositely directed arch-like structures in the crustal magnetic field. The nearly vertical magnetic field lines in the region between the arches are thought to connect into the solar wind, thereby allowing solar wind electrons to heat the lower levels of the ionosphere, with an attendant increase in the scale height and electron density.  相似文献   

15.
This paper investigated the data processing method for a GPS/IMU/magnetometer integrated system with Kalman filtering (KF). As a result of GPS/IMU/magnetometer land vehicle system, dead-reckoning of magnetometer and accelerometer integrated subsystem bridged very well the GPS signal outage due to the trees on the two sides of the road. Both differential GPS data processing method and the carrier-phase method with magnetometers’ outputs for predicting the car position, velocity, and acceleration (PVA) are presented. The results from DGPS with Kinematical Positioning (KINPOS) software shown that the averages of the north, east, and down direction standard deviation (short for “std”) are 0.014, 0.010, and 0.018 m, respectively. The std of velocities and accelerations derived by the position and velocity differentiation are 10, 7, 13 mm/s, 7, 5, 9 mm/s2, respectively. This method for getting velocities and accelerations requires higher accurate position coordinates. But the position accuracy has frequently been degraded in this case when the car drove under the trees or other similar kinematical environments. That caused the larger velocity and acceleration errors. While the results from the carrier-phase method are std of the velocities = 2.1 mm/s, 1.3 mm/s, 3.7 mm/s in north, east, down, and std of the accelerations = 1.5 mm/s2, 0.9 mm/s2, 2.3 mm/s2 for the static test period; as compared with KINPOS software results, std of the velocity difference between the carrier-phase method and the DGPS method = 7 mm/s, 6.9 mm/s, 9.7 mm/s in north, east, down direction, and std of acceleration difference = 5.0 mm/s2, 4.5 mm/s2, 7.5 mm/s2 in north, east, down direction for the kinematical test period. Obviously, errors come from both the carrier-phase method and DGPS velocity and acceleration results derived directly by the position differentiation. In addition, better accuracy of positions than that before KF has been got by means of velocities and accelerations derived by the carrier-phase method after KF.  相似文献   

16.
Digital ionosonde and magnetometer observations from a polar cap station are used to estimate the fraction of Region 1 current that flows across the polar cap. For a winter case study using data for 2001 Feb 18 the cross-cap current was 3.9 × 104 A Pedersen current and 6 × 104 A Hall current. This total current is only a small percentage, ∼5%, of the Region 1 current.  相似文献   

17.
Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (∼10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (∼10 km) where range evaluation repetition rates of ∼100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.  相似文献   

18.
For decades, clouds have remained a central open question in understanding the climate system of Venus. We have developed a new microphysical model for the clouds of Venus that we describe in this paper. The model is a modal aerosol dynamical model that treats the formation and evolution of sulfuric acid solution droplets with a moderate computational cost. To this end, the microphysical equations are derived to describe the evolution of the size distribution of the particles using the moments of the distribution. We describe the derivation of the equations and their implementation in the model. We tested each microphysical process of the model separately in conditions of the Venus’ atmosphere and show that the model behaves in a physically sound manner in the tested cases. The model will be coupled in the future with a Venus Global Climate Model and used for elucidating the remaining mysteries.  相似文献   

19.
An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60–145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5–50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.  相似文献   

20.
In recent years Global Navigation Satellite System’s signals Reflectometry (GNSS-R) has stood as a potential powerful remote sensing technique to derive scientifically relevant geophysical parameters such as ocean altimetry, sea state or soil moisture. This has brought out the need of designing and implementing appropriate receivers in order to track and process this kind of signals in real-time to avoid the storage of huge volumes of raw data. This paper presents the architecture and performance of the Global Positioning System (GPS) Reflectometer Instrument for PAU (griPAU), a real-time high resolution Delay-Doppler Map reflectometer, operating at the GPS L1 frequency with the C/A codes. The griPAU instrument computes 24 × 32 complex points DDMs with configurable resolution (ΔfDmin = 20 Hz, Δτmin = 0.05 chips) and selectable coherent (minimum = 1 ms, maximum = 100 ms for correlation loss Δρ < 90%) and incoherent integration times (minimum of one coherent integration period and maximum not limited but typically <1 s). A high sensitivity (DDM peak relative error = 0.9% and DDM volume relative error = 0.03% @ Ti = 1 s) and stability (Δρt = −1 s−1) have been achieved by means of advanced digital design techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号