首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   

2.
We present observations of a C9.4 flare on 2002 June 2 in EUV (TRACE) and X-rays (RHESSI). The multiwavelength data reveal: (1) the involvement of a quadrupole magnetic configuration; (2) loop expansion and ribbon motion in the pre-impulsive phase; (3) gradual formation of a new compact loop with a long cusp at the top during the impulsive phase of the flare; (4) appearance of a large, twisted loop above the cusp expanding outward immediately after the hard X-ray peak; and (5) X-ray emission observed only from the new compact loop and the cusp. In particular, the gradual formation of an EUV cusp feature is very clear. The observations also reveal the timing of the cusp formation and particle acceleration: most of the impulsive hard X-rays (>25 keV) were emitted before the cusp was seen. This suggests that fast reconnection occurred during the restructuring of the magnetic configuration, resulting in more efficient particle acceleration, while the reconnection slowed after the cusp was completely formed and the magnetic geometry was stabilized. This observation is consistent with the observations obtained with Yohkoh/Soft X-ray Telescope (SXT) that soft X-ray cusp structures only appear after the major impulsive energy release in solar flares. These observations have important implications for the modeling of magnetic reconnection and particle acceleration.  相似文献   

3.
The M4.0/SF flare on 17 March 2002 is a good example of the early observations with RHESSI. We presenthard X-ray images, light curves and energy spectra of individual hard X-ray sources, the spatial relationship between the hard X-ray sources and the H emission regions, and comparisons of light curves observed by RHESSI and GOES. We found that the picture exhibited by RHESSI is consistent with the general cartoon of a solar flare. In particular, we showed that the hard X-ray image spectra could be explained by a power-law electron beam with a lower energy cutoff Ec. The derived Ec could be as high as 40 keV, larger than the usually value of 20 keV.  相似文献   

4.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

5.
Radio bursts with fine structures in decimetric–centimetric wave range are generally believed to manifest the primary energy release process during flare/CME events. By spectropolarimeters in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz at NAOC/Huairou with very high temporal (1.25–8 ms) and spectral (4–20 MHz) resolutions, the zebra patterns, spikes, and new types of radio fine structures with mixed frequency drift features are observed during several significant flare/CME events. In this paper we will discuss the occurrence of radio fine structures during the impulsive phase of flares and/or CME initiations, which may be connected to the magnetic reconnection processes.  相似文献   

6.
Observational studies of the pre-cursor phase of solar flares have shown that there are many and varied signatures that may or may not indicate the probable onset of a flare. Combining data from Yohkoh, SOHO and TRACE and more recent observations from RHESSI, SOHO and TRACE we, investigate the relationships between the different manifestations of pre-flare behaviour in two solar flares with a view to determining how they are related to the subsequent flare energy release. We find that in one case the preflare activity seems strongly related to the subsequent flare and probably represents a build-up of energy in the active region prior to flare onset. The second case we find to be less clear cut suggesting that significant further work remains to be done in order to determine which pre-flare signatures are most useful in indicating the build-up to flare onset.  相似文献   

7.
A popular scenario for electron acceleration in solar flares is transit-time damping of low-frequency MHD waves excited by reconnection and its outflows. The scenario requires several processes in sequence to yield energetic electrons of the observed large number. Until now there was very little evidence for this scenario, as it is even not clear where the flare energy is released. RHESSI measurements of bremsstrahlung by non-thermal flare electrons yield energy estimates as well as the position where the energy is deposited. Thus quantitative measurements can be put into the frame of the global magnetic field configuration as seen in coronal EUV line observations. We present RHESSI observations combined with TRACE data that suggest primary energy inputs mostly into electron acceleration and to a minor fraction into coronal heating and primary motion. The more sensitive and lower energy X-ray observations by RHESSI have found also small events (C class) at the time of the acceleration of electron beams exciting meter wave Type III bursts. However, not all RHESSI flares involve Type III radio emissions. The association of other decimeter radio emissions, such as narrowband spikes and pulsations, with X-rays is summarized in view of electron acceleration.  相似文献   

8.
We use simultaneous observations from RESIK and RHESSI instruments to compare plasma properties of a major solar flare in its rise and gradual phase. This event occurred on 2002 August 3 (peak time at 19:06 UT). The flare had a very good coverage with RESIK data and well-resolved soft and hard X-ray sources were seen in RHESSI images. Spectra of X-ray radiation from RHESSI images are studied and compared with RESIK measurements in different flare phases. Result shows large differences in flare morphology and spectra between flare rise and gradual phase.  相似文献   

9.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

10.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

11.
We observed 10 active regions through their disk passage during June 25–August 25, 1988, with the Tower Vector Magnetograph (TVM) of Marshall Space Flight Center. The TVM was used in scanning mode to measure the photospheric Doppler velocities with the Line-Center-Magnetogram (LCM) technique in the spectral line of FeI 5250.2 Å. In this paper we present the result of a subset of observations obtained while the active regions were situated away from the solar limb. A wide range of magnetic complexity and associated chromospheric activity characterized these active regions. It was found that the value of zero-crossing wavelength of the integrated Stokes-V profile of two opposite magnetic polarities were different, corresponding to Doppler velocities ranging from ∼100 m s−1 to ∼1475 m s−1. The measurements of relative velocities between different locations, connected by magnetic flux tubes as inferred from YOHKOH soft X-ray and TRACE 171 Å Fe IX images, showed widely different values of dominant localized flows. The region of parasite polarity, which showed recurrent chromospheric activity, was blue shifted with respect to the main “magnetic element” of the same polarity. Some of them were also the sites of sheared magnetic field configuration. The magnitude of the relative velocity between the leading and following polarity is more for the active regions of higher “field asymmetry”.  相似文献   

12.
The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996–2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME–flare associated events. The results show that CME–flare associated events are triggered with a lift-off time within the range 0.4–1.0 h. We list a set of 41 CME–flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME–flare associated events with correlation coefficient of 0.76.  相似文献   

13.
During the first half of November 2004, many solar flares and coronal mass ejections (CMEs) were associated with solar active region (AR) 10696. This paper attempts to identify the solar and interplanetary origins of two superstorms which occurred on 8 and 10 November with peak intensities of Dst = −373 nT and −289 nT, respectively. Southward interplanetary magnetic fields within a magnetic cloud (MC), and a sheath + MC were the causes of these two superstorms, respectively. Two different CME propagation models [Gopalswamy, N., Yashiro, S., Kaiser, M.L. et al. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207–29219, 2001; Gopalswamy, N.S., Lara, A., Manoharan, P.K. et al. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289–2294, 2005] were employed to attempt to identify the solar sources. It is found that the models identify several potential CMEs as possible sources for each of the superstorms. The two Gopalswamy et al. models give the possible sources for the first superstorm as CMEs on 2330 UT 4 November 2004 or on 1454 UT 5 November 2004. For the second superstorm, the possible solar source was a CME that on 0754 UT 5 November 2004 or one that occurred on 1206 UT 5 November 2004. We note that other propagation models sometimes agree and other times disagree with the above results. It is concluded that during high solar/interplanetary activity intervals such as this one, the exact solar source is difficult to identify. More refined propagation models are needed.  相似文献   

14.
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43° and 44°), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME–CME interaction might be a key process in exciting the type II radio emission by slow CMEs.  相似文献   

15.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

16.
On 2010 February 8, the Extreme ultraviolet (EUV) flux variation in 195 Å and flare brightening has been examined in different sizes of active regions by using SOHO/EIT, MDI and Hαα observational data. These three active regions represent a large active region with a sunspot group, a moderate active region without a sunspot and a small region with weak plage in Hαα band respectively. Our study shows that the main full disk EUV flux comes from active regions, especially from large active regions. The sudden increases of EUV flux are corresponding to the EUV flare brightenings. For the large active region, the local EUV 195 Å flux peaks are well correlated to that of the GOES X-ray flux. The EUV 195 Å flux peaking time of M-class flares delay GOES X-ray flux a few minutes. For the moderate active region, the local EUV 195 Å flux is not well correlated to GOES X-ray flux. The EUV 195 Å flare brightenings in the moderate active region appeared in the duration of sudden increase of its own local EUV flux. For the small active region, the local EUV 195  Å flux varied almost independently of the GOES X-ray flux. Our study suggests that for an active region its local EUV 195 Å flux is more closely correlated to the EUV flare brightening than the full disk GOES X-ray flux.  相似文献   

17.
Observation of two flares obtained with the Solar Maximum Mission spectrometers indicate that at flare onset the emission in soft (3.5 – 8 keV) and hard (16 – 30 keV) X-rays is predominant at the footpoints of the flaring loops. Since, at the same time, blue-shifts are observed in the soft X-ray spectra from the plasma at temperature of 107 K, we infer that material is injected at high velocity into the coronal loops from the footpoints. These areas are also the sites of energy deposition, since their emission in hard X-rays is due to non-thermal electrons penetrating in the denser atmosphere. Hence, chromospheric evaporation occurs where energy is deposited. During the impulsive phase, the configuration of the flare region changes indicating that the flaring loop is progressively filled by hot plasma.  相似文献   

18.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

19.
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares.  相似文献   

20.
On October 28, 2003 an Earthward-directed coronal mass ejection (CME) was observed from SOHO/LASCO imagery in conjunction with an X17 solar flare. The CME, traveling at nearly 2000 km/s, impacted the Earth on October 29, 2003 causing ground-based particle detectors to register a counting rate drop known as a Forbush decrease. The CME was not only responsible for affecting the rate of cosmic rays, but also caused anisotropies in their direction of incidence. Data from Project GRAND, an array of proportional wire chambers which detects secondary muons, are presented during the time of this Forbush decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号