首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
飞机液压系统管路设计,应考虑导管材料、直径和壁厚的选择及系统工作压力、介质流量与工作环境相适应,既要保证导管有足够的强度,又要使系统重量最轻,寿命可靠性高。这里从导管管径设计、壁厚确定、爆破压力和管路安装等方面对飞机液压管路系统的设计作了分析,提供了导管设计的计算方法。  相似文献   

2.
JEM效应与雷达目标识别研究   总被引:2,自引:0,他引:2  
对 J E M 效应进行数学建模后详细分析了飞机回波谱线特点;利用累量域谐波恢复的 E S P R I T E 方法,对利用常规低分辨雷达实测某型号飞机动态数据进行处理,得到了 J E M 调制谱线;并从中提取了目标的转速以及旋翼数目等特征量,处理结果证实了所建数学模型的正确性;最后,对两种型号飞机进行识别研究,得到很高的识别概率  相似文献   

3.
飞机液压导管破裂故障分析及措施   总被引:1,自引:0,他引:1  
详细分析了导致飞机液压导管破裂的原因,并在此基础上有针对性地提出预防液压导管破裂的措施。 飞机液压导管犹如人体的血管,如果 破裂,轻则影响战训任务的完成,重则危及飞行安全。由于飞机机体的限制使液压导管布局有些地方不合理,有时一段导管有几处弯曲;而且飞机液压系统工作压力较高,流量脉冲大,存在液压撞击并伴随有高频压力振荡;加之液压油的循环使用也使其极易被污染;所以飞机液压导管较其他飞机管路系统的导管更易破裂。据近几年统计,各种机型的飞机都曾出现多次液压导管破裂的故障。由于飞机液压导管绝大部分是金属导管…  相似文献   

4.
为分析多重非包容转子碎片对飞机造成的危害,提出一种基于飞机整机功能危险分析(FHA)结果、应用故障树分析(FTA)的非包容转子碎片失效危险识别方法。该方法能够识别多个系统同时失效导致的组合危险,进而为非包容转子失效飞机设计改进提供更详实、可信的依据。最后通过实例分析表明了方法的有效性。  相似文献   

5.
民用飞机厨房配电方法对于降低电源系统设计容量和减轻飞机重量起着重要的作用。在分析飞机厨房设备两种耗电模型的基础上,提出了民用飞机厨房智能配电方法 ,并分析了厨房设备的智能工作流程、用电请求级别和用电设备优先级。对国产某型支线飞机的厨房系统运用该方法进行了配电设计验证。结果表明,厨房设备需求的总功率仅为传统设计方法所需功率的30.9%。  相似文献   

6.
提出了一种确定飞机类型的新方法。通过 机外型和结构特征,利用空间投影理论建立了飞机投影图形与飞机姿态角之间的关系。通过该关系方程,有效地识别了飞机姿态角。利用已有的飞机型的投影图特征与实际飞机飞行图像特征之间的误差,根据最小方差进行了模型匹配。利用CCD系统图像仿真结果表明,所提出的方法是有效的。  相似文献   

7.
田福礼 《飞行力学》1993,11(3):50-60
提出了一套识别飞机系统动态特性的方法。对于短时激励信号,可同时采取时域法和频域法;对长时激励信号仅采取频域法。方法验证采用了变稳飞机电传系统试飞数据和专门的仿真试验数据。结果表明:该方法可解决电传飞机系统识别和评定中的许多问题,并为更进一步的应用研究打下基础。  相似文献   

8.
传统的故障隔离程序采用常规静态故障树进行故障分析,可能会导致故障原因分析不全、故障隔离路径过于繁琐等问题。提出基于系统原理和动态故障树进行故障隔离程序分析的方法,以某飞机防火系统引气导管过热探测系统故障为实例,进行系统设计原理和故障告警逻辑分析,引入动态逻辑门,构建具有顺序相关、功能相关和备份关系的动态故障树;在此基础上进行关联故障分析和排故流程图转化。结果表明:该方法能系统地、全面地反映故障触发逻辑,提供快速、准确、有效的故障隔离程序,提高飞机维修保障水平,在复杂飞机系统的航线维修领域具有良好的应用前景和推广价值。  相似文献   

9.
飞机数字化装配技术   总被引:3,自引:0,他引:3  
飞机产品数字化设计制造技术以全面采用数字化产品定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了飞机传统的设计与制造方式,大幅度地提高了飞机设计制造技术水平。  相似文献   

10.
飞机焊接导管数字化制造技术研究   总被引:2,自引:0,他引:2  
针对目前飞机导管在生产制造上存在的不足,为了缩短导管工装设计周期,提高导管工装定位的准确度和导管的制造精度,对飞机焊接导管数字化装配工装、自动焊接等关键技术进行了研究。采用数字化设计方法建立焊接工装的数模,通过孔定位方法实现导管焊接的定位和夹紧,通过坐标系拟合、焊缝跟踪和修正等完成导管间的自动焊接,实现焊接导管的数字化制造。  相似文献   

11.
《试飞研究》1998,(4):24-31
实验性飞行试验和工程飞行试验的主要目的之一是识别飞机系统的动态特性。系统识别用途很多,包括飞行品质研究,飞控系统设计和检验、模拟验证、气动弹性和振动研究以及规范的符合。直升机频域系统识别在过去十年间得到了发展。频域方法采用时域飞行数据(如频域扫描)并将其转换到频域。对于那种数据的各种应用已发表了广泛的资料,但有关飞行试验设计和实施方法的资料非常少。经验教训说明了规定训练及确定频域飞行试验方法的重要  相似文献   

12.
动态载荷识别方法研究   总被引:2,自引:0,他引:2  
动态载荷识别技术是飞机设计中的关键技术之一,本文对动态载荷识别方法进行了综述,详细介绍了频域反演法,时域反演法,神经网络反演法,逆虚拟激励法以及优化反演法的研究进展。  相似文献   

13.
基于激振力矢量优化和虚拟验证技术,提出了一种飞机地面振动试验的相位共振和相位分离一体化方法。具有密集模态的法宇航GARTEUR飞机模型实验应用证明了这一方法的有效性。本项研究对于改进复杂飞机机体结构的模态识别质量和效率具有重要工程意义。  相似文献   

14.
肖华  王立新 《航空学报》2007,28(5):1062-1068
 W型无尾飞机基于前掠翼及翼身融合的一体化设计,取消了平尾和垂尾,可大幅降低雷达反射截面积,减轻结构重量;同时具有亚声速气动效率高、横航向操纵面效率高的优势。根据该构型的特点,配置设计了新型的多操纵面,并研究了其新的操纵机理。在此基础上,计算分析了这一新布局飞机特殊的三轴稳定特性,研究表明,W型无尾飞机的纵向阻尼不足,纵向短周期和长周期模态分别仅满足III级和II级飞行品质;横航向都是静不稳定的,动稳定性表征为滚转模态的发散和荷兰滚模态稳定,并分析了其可能的物理成因。最后研究了横航向静稳定性导数对W型无尾飞机横航向稳定边界的影响。研究方法和结果对于新布局飞机初步设计具有重要参考价值。  相似文献   

15.
为解决飞机结构件数控加工工艺决策效率低及自动化程度不高的问题,提出基于特征编码的飞机结构件工艺设计方法。首先,该方法借鉴成组技术,将飞机结构件加工元分类编码,形成特征编码表后,把通过特征识别得到的加工特征分解为加工元,与特征编码表匹配并排序得到加工方案。最后,在CATIA V5平台上开发了基于特征编码的飞机结构件工艺设计模块。  相似文献   

16.
《航空计测技术》2007,27(3):58-58
机械加工厂在生产过程中常常要面对刀具破损问题,识别刀具破损的位置和原因也成为机械加工过程中的一个难题。传统的非接触式刀具破损检测系统根据激光光束是否被遮挡来判断刀具是否正常:被遮挡时,表明刀具正常;未被遮挡时,表明刀具破损。  相似文献   

17.
飞机导管数字化柔性定位装夹技术探讨   总被引:1,自引:0,他引:1  
因飞机导管种类多、数量大、形状复杂,针对传统定位装夹技术无法满足飞机导管精确、高效、敏捷制造需求,探讨了飞机导管数字化柔性定位装夹技术方案。提出了阵列式夹具、被动数字化重构夹具和自主数字化重构夹具3种飞机导管数字化柔性定位装夹技术方案,为实现导管数字化定位、高效精确装夹提供解决方案,达到缩短导管制造装备周期,降低制造成本的目的。  相似文献   

18.
飞机产品数字化设计制造技术是20世纪80年代后期以来,随着CAD/CAM、计算机信息和网络技术的发展,以全面采用数字化产品定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志的新一代设计制造技术,它从根本上改变了飞机传统的设计与制造方式,大幅度提高了飞机设计制造技术水平.  相似文献   

19.
数字化自动钻铆技术在飞机制造中的应用   总被引:4,自引:0,他引:4  
随着CAD/CAM、计算机信息和网络技术的发展,飞机产品数字化设计制造技术以全面采用数字化产品定义、数字化预装配、产品数据管理、并行工程和虚拟制造技术为主要标志,从根本上改变了传统的飞机设计与制造方式,大大地提高了飞机设计制造技术水平。自动数控钻铆技术是其重要的组成部分。  相似文献   

20.
针对双旁侧无隔道超声速进气道中S弯流道内部流向涡产生的大畸变问题,提出了参数化设计技术,并基于典型飞机前体设计进气道构型,利用Liutex涡识别技术分析S弯流道内部的流动机理,并探索提升进气道出口流场品质的设计技术。研究结果表明:Liutex涡识别理论在进气道流场中能够有效识别流向涡的大小和强度;为抑制流向涡的产生和发展,降低出口畸变,进气道入口处上唇口一侧流道应采用较小的曲率,下唇口一侧则需要增大曲率;S弯流道末端应增大扭曲程度以将流向涡推至进气道出口中间区域。本文研究可有效抑制无隔道超声速进气道出口畸变,为控制S弯流道内部流向涡结构探索新型设计方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号