首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The design and development of a system for inferring the position of terrestrial satellite uplink stations using existing domestic satellites with minimal disruption to normal satellite operation are described. Two methods are presented by which a quantity measured at a terrestrial receiving site is mapped into a curve of possible uplink locations on the Earth's surface. One method involves measuring differential time delays of a single uplink signal observed through two adjacent spacecraft. The other uses a short baseline interferometer composed of the two cross-polarized and spatially separated antenna feeds aboard an affected satellite. A unique location is obtained by using an appropriate combination of the two methods. A system for measurement of the required differential delays and phases and experimental work performed to demonstrate the feasibility of the location methods are described  相似文献   

2.
The Applications Technology Satellite-6 (ATS-6) RF interferometer is utilized primarily as a precision 3-axis attitude sensor having an unambiguous field of view of 350°. This function requires two separated ground transmitters, each using one of the two available frequency channels or sharing a single channel by time multiplexing. For 3-axis control, one uplink transmitter can provide 2-axis attitude (pitch and roll) with other sensors (e.g., a Polaris tracker) providing yaw attitude. By utilizing two uplink transmitters and the Earth sensor or three time multiplexed uplink transmitters, the interferometer can also provide measurements of ATS-6 spacecraft orbit position. Uplink frequencies are 6.150 and 6.155 GHz. The receiving antennas are spaced at 19.95 wavelengths (?) for the vernier baseline and 1.66 ? for the coarse baseline. Spacecraft system weight is 8.39 kg (18.5 lb) and power requirement is 15.5 W. Flight evaluation results are given for the interferometer including R F link budgets, modulation of uplink carrier, signal-to-noise ratio, and dropout behavior. A hardware calibration model is described, containing major biases in the phase measurements. Techniques for flight calibration as both an attitude and spacecraft position sensor are outlined . Flight testing has shown that on-line calibration of receiver/converter biases must be performed on a short term routine basis. Interferometer resolution was found to be 0.00140 space angle with negligible noise (jitter) at transmitted power levels above 72 dBW. As an attitude sensor, the interferometer has demonstrated the ability to provide stabilization to better than 0.  相似文献   

3.
天线组阵能否完全替代大口径天线有一个关键性难题,就是天线阵是否支持上行链路组阵。深空航天器无法将不同地面天线的上行信号对齐,所以上行链路信号的调整必须在地面完成。针对上行组阵发射机相位调整问题,提出一种基于VLBI(Very Long Baseline Interferometry,甚长基线干涉测量)技术的接收模式天线上行组阵标校方案,并对标校精度进行了简要分析。将上行链路时延分解为几何时延和发射系统时延,建立了几何时延模型,通过标定接收时延和发射时延,便可以得到天线阵元间的相位标校值。理论分析结果表明,该方案具有一定的可行性,对上行组阵相位标校的研究具有一定的借鉴意义。  相似文献   

4.
An analysis is made of the errors in the determination of the position of an emergency transmitter in a satellite-aided search and rescue system. The satellite is assumed to be at a height of 820 km in a near-circular near polar orbit. Short data spans of four minutes or less are used. The error sources considered are measurement noise, transmitter frequency drift, ionospheric effects, and error in the assumed height of the transmitter. The errors are calculated for several different transmitter positions, data rates, and data spans. The only transmitter frequency used was 406 MHz, but the result can be scaled to different frequencies.  相似文献   

5.
One method of geolocation is based on measuring the time difference of arrivals (TDOAs) of a signal received by three or four geostationary satellites. The received signals are cross-correlated to determine the TDOAs and a set of nonlinear equations are solved to produce the location estimate. An exact solution for the transmitter position is derived for the three or four receiver cases. Extension of the solution method to more receivers is straightforward. An analysis of the performance of the system is given, together with expressions for predicting the localization mean-square errors (MSEs) and bias, and the Cramer-Rao bound. Both precision in TDOA measurements and the relative geometry between receivers and transmitter affect the localization accuracy. The geometric factors act as multipliers to the TDOA variance in the bias and MSE formulae. A study of the dependency of the geometric factors on transmitter position and satellite spacings are provided, as well as simulation results  相似文献   

6.
双基地及其联网系统的定位方法及精度分析   总被引:7,自引:0,他引:7  
何黎星  孙仲康 《航空学报》1993,14(9):542-545
讨论的双基地系统中,发射站只起照射目标的作用,而接收站测量距离和、方位角及俯仰角。分析了双基地系统的目标定位方法和定位误差。通过分析定位精度在受控区域内的分布,提示了双基地系统的定位性能。文中对组网双基地系统的定位处理方法进行了讨论,其中采用WLS(Weighted Least Square)算法进行数据融合处理,仿真结果表明,联网双基地系统的定位精度大有提高。  相似文献   

7.
Emitter Location Accuracy Using TDOA and Differential Doppler   总被引:2,自引:0,他引:2  
Two methods for locating a radio or sonar transmitter are briefly described: time difference of arrival (TDOA). d differential Doppler. Two formulas are derived which relate the accuracy of the time and frequency measurements the ?one-sigma widths? of the lines of constant TDOA onstant differential Doppler on the surface of the FDOA.  相似文献   

8.
The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i. e., the generation of an impulse equivalent code.  相似文献   

9.
A real time analytical orbit determination method has been developed for precision national time synchronization. The one-way time transfer technique via a geostationary TV satellite standard time and frequency signal (STFS) dissemination system was considered. The differential method was also applied for mitigating errors in geostationary satellite STFS dissemination system. Analytical dynamic orbit determination with extended Kalman filter (EKF) was implemented to improve differential mode STFS (DSTFS) service accuracy by acquiring better accuracy of a geostationary satellite position. The perturbation force models applied for satellite dynamics include the geopotential perturbation up to fifth degree and order harmonics, luni-solar perturbations, and solar radiation pressure. All of the perturbation effects were analyzed by secular, short, and long period variations for equinoctial orbit elements such as semimajor axis, eccentricity vector, inclination vector, and mean right ascension of the geostationary satellite. The reference stations for orbit determination were composed of four calibrated stations. Simulations were performed to evaluate the performance of real time analytical orbit determination in Korea. The simulation results demonstrated that it is possible to determine real time position of geostationary satellite with the accuracy of 300 m rms. This performance implies that the time accuracy is better than 25 ns all over the Korean peninsula. The real time analytical orbit determination method developed in this research can provide a reliable, extremely high accurate time synchronization service through setting up domestic-only benchmarks.  相似文献   

10.
The radio science investigations planned for Galileo's 6-year flight to and 2-year orbit of Jupiter use as their instrument the dual-frequency radio system on the spacecraft operating in conjunction with various US and German tracking stations on Earth. The planned radio propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements will be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system used for these investigations is based on Voyager heritage but with several important additions and modifications that provide linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. Collaboration between the investigators and the space-craft communications engineers has resulted in the first highly-stable, dual-frequency, spacecraft radio system suitable for simultaneous measurements of all the parameters normally attributed to radio waves.  相似文献   

11.
In this paper the problem of uplink array calibration for deep-space communication is considered. A phased array of many modest-size reflectors antennas is used to drastically improve the uplink effective isotropic radiated power of a ground station. A radar calibration procedure for the array phase distribution is presented using a number of in-orbit targets. Design of optimal orbit and the number of calibration targets is investigated for providing frequent calibration opportunities needed for compensating array elements phase center movements as the array tracks a spacecraft. Array far-field focusing based on the near-filed in-orbit (low Earth orbit (LEO)) calibration targets is also presented and array gain degradation analysis based on the position error of the array elements and in-orbit targets has been carried out. It is shown that errors in the in-orbit targets positions significantly degrade the far-field array gain while the errors in array elements positions are not very important. Analysis of phase errors caused by thermal noise, system instability, and atmospheric effects show insignificant array gain degradation by these factors  相似文献   

12.
Bandwidth maximization for satellite laser communication   总被引:3,自引:0,他引:3  
Free space optical communication between satellites networked together can make possible high speed communication between different places on Earth. The basic free space optical communication network includes at least two satellites. In order to communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. The pointing systems for laser satellite communication suffer during tracking from vibration due to electronic noise, background radiation from interstellar objects such as Sun, Moon, Earth, and Stars in the tracking field of view, and mechanical impact from satellite internal and external sources. Due to vibrations the receiver receives less power. This effect limits the system bandwidth for given bit error rate (BER). In this research we derive an algorithm to maximize the communication system bandwidth using the transmitter telescope gain as a free variable based on the vibration statistics model and the system parameters. Our model makes it possible to adapt the bandwidth and transmitter gain to change of vibration amplitude. We also present an example of a practical satellite network which includes a direct detection receiver with an optical amplifier. A bandwidth improvement of three orders of magnitude is achieved in this example for certain conditions, as compared with an unoptimized system  相似文献   

13.
《中国航空学报》2021,34(2):191-200
A new method is illustrated for processing the output of a set of triad orthogonal rate gyros and accelerometers to reconstruct vehicle navigation parameters (attitude, velocity, and position). The paper introduces two vectors with dimensions 4 × 1 as velocity and position quaternions. The navigation equations for strapdown systems are nonlinear but after using these parameters, the navigation equations are converted into a pseudo-linear system. The new set of navigation equations has an analytical solution and the state transition matrix is used to solve the linear time-varying differential equations through time series. The navigation parameters are updated using the new formulation for strapdown navigation equations. Finally, the quaternions of velocity and position are converted into the original position and velocity vectors. The combination of the coning motion and a translational oscillatory trajectory is used to evaluate the accuracy of the proposed algorithm. The simulations show significant improvement in the accuracy of the inertial navigation system, which is achieved through the mentioned algorithm.  相似文献   

14.
This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to estimate the location of a target. Compared with the TDOA-only method which needs two steps, the proposed method estimates the target position more directly. The constrained total least squares(CTLS) technique is applied in this approach. It achieves the Cramer–Rao lower bound(CRLB) when the parameter measurements are subject to small Gaussian-distributed errors. Performance analysis and the CRLB of this approach are also studied. Theory verifies that the ATDOA method gets a lower CRLB than the TDOA-only method with the same TDOA measuring error. It can also be seen that the position of the target affects estimating precision.At the same time, the locations of transmitters affect the precision and its gradient direction.Compared with the TDOA, the ATDOA method can obtain more precise target position estimation.Furthermore, the proposed method accomplishes target position estimation with a single transmitter,while the TDOA-only method needs at least four transmitters to get the target position. Furthermore,the transmitters' position errors also affect precision of estimation regularly.  相似文献   

15.
针对航天测控领域中上行遥控业务的协议体系选择与可靠性设计问题,在对我国现行国军标技术指标要求与现有航天测控系统天地基遥控技术特点进行归纳梳理的基础上,基于空间段信息传输无线链路特点与CCSDS(Consultative Committee for Space Data Systems,空间数据系统咨询委员会)标准规范,研究给出了适用于我国航天测控任务的空间段遥控协议体系与可靠性措施,利用梳理统计方法对上行遥控体制进行了数学建模分析,并与CCSDS给出的应用算例进行了对比分析.分析结果表明,所涉及的上行遥控体制与CCSDS标准规范的工作效能基本相当,能够满足我国航天任务上行遥控任务使用需求.  相似文献   

16.
The effects of the cross correlation between user codes in an opticalcode-division multiple-access communication system are investigated. The system model is a multiaccess satellite repeater in which the uplink and downlink channels are direct-detection, optical-polarization modulation links. The error probability is derived in terms of the cross correlation between the intended and interfering user codes. It is shown that the system error rate can be minimized by using code sequences in which the normalized second moment of the cross correlation between codes is small. The signalto- noise ratio (SNR) on the uplink is shown to be proportional to 1/K while the SNR on the downlink is proportional to 1/K1/2, where K is the number of users which are simultaneously accessing the system.  相似文献   

17.
位置动态响应速度快和响应无超调是目前高性能位置伺服系统的两个重要指标。单纯的比例或比例微分位置调节器无法同时满足这两个要求,所以提出了一种新型定位复合控制策略。首先为保证运动过程柔滑无冲击而设定速度余弦函数曲线给定,从而根据平滑变化的速度给定对位置给定信号进行轨迹优化,避免了加速度突变带来的冲击。系统控制结构上提出在前馈控制的基础上引入位置伪微分负反馈控制环节,该环节增加了系统阻尼,减少位置超调量,同时结合前馈控制保证了位置快速跟踪性能。由于采用了伪微分结构代替位置微分运算,避免了微分带来的量化噪声干扰,进一步提升了系统跟踪性能。最后给出了结构参数的取值范围。仿真和试验结果验证了该控制策略的可行性和有效性。  相似文献   

18.
测控中的星载计算机快速切换   总被引:1,自引:0,他引:1  
针对低轨卫星长期管理与测控中的星载计算机所需要的切换、维护的测控时间相对较长的问题,在分析原有主、备星载计算机的时间比对方法的基础上,直接针对备机建立新的时间同步模型,并进行公式推导和理论误差分析;然后建立新的测控事件调度模型,实现时间同步数据与主备机一致性数据的同时注入,优化工作流程,并有效缩短测控时间;最后编写新的遥控作业,在测控中进行实践.应用结果表明,采用新方法可以在一个测控圈次内完成在轨星载计算机的切换与维护,MTTR(Mean Time To Repair,平均恢复时间)小于8 min,时间同步精度优于1 ms,所需测控圈次相对于原方法减少83%以上,适用于在轨卫星长期管理与测控.  相似文献   

19.
提出了一种星载双模测控应答机基带设计方案,采用COTS(商用现货)器件实现,能较好解决星载功率受限和空间辐射效应引起的相关问题。测控应答机主处理器由反熔丝FPGA(现场可编程门阵列)实现,可在低功耗条件下保证最基本测控需求,解调上行DPSK(差分相移键控)信号,调制下行扩频信号;协处理器受主处理器控制,由SRAM(静态存储器)FPGA来实现,对上行扩频信号进行解扩解调。测控应答机可根据星载电源功率情况和不同测控任务切换模式,具有成本低、可靠性高、使用灵活等优势。  相似文献   

20.
The early 1990's communications for air traffic control (ATC) uses analog single channel radios with conventional amplitude modulation (AM) in the very high frequency (VHF) band. To overcome eventual saturation of the current system, a sample “next generation” ATC communications system has been designed to increase capabilities and provide a graceful transition from the current system. The new ATC communication system must address problems with the modulation format and a balance between increased channel capacity and overall cost. The controller/pilot workloads can be reduced in that the information segments allow for either semi-automatic or fully automatic handoff or frequency change. The principal performance factor is the addition of data, fully integrated with voice, while offering an increase in throughput. The architecture is structured to put priority on the uplink voice messages while offering significant information capacity capabilities for external data sources. When digital data and voice communication systems mature in the ATC environment, a natural evolution to more data traffic and less voice will occur. At that time, a simple restructuring of the channel assignments and priorities could offer increased throughput for connection to ground based data sources such as high capacity routers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号