首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Nick Kanas 《Acta Astronautica》2011,68(5-6):576-581
Current planning for the first interplanetary expedition to Mars envisions a crew of 6 or 7 people and a mission duration of around 2.5 years. However, this time frame is much less than that expected on expeditions to the outer solar system, where total mission durations of 10 years or more are likely. Although future technological breakthroughs in propulsion systems and space vehicle construction may speed up transit times, for now we must realistically consider the psychological impact of missions lasting for one or more decades.Available information largely deals with on-orbit missions. In research that involved Mir and ISS missions lasting up to 7 months, our group and others have studied the effects of psychological and interpersonal issues on crewmembers and on the crew-ground relationship. We also studied the positive effects of being in space. However, human expeditions to the outer planets and beyond will introduce a number of new psychological and interpersonal stressors that have not been experienced before. There will be unprecedented levels of isolation and monotony, real-time communication with the Earth will not be possible, the crew will have to work autonomously, there will be great dependence on computers and other technical resources located on board, and the Earth will become an insignificant dot in space or will even disappear from view entirely.Strategies for dealing with psychological issues involving missions to the outer solar system and beyond will be considered and discussed, including those related to new technologies being considered for interstellar missions, such as traveling at a significant fraction of the speed of light, putting crewmembers in suspended animation, or creating giant self-contained generation ships of colonists who will not return to Earth.  相似文献   

2.
The objective of this paper is twofold: (a) to review the current knowledge of cultural, psychological, psychiatric, cognitive, interpersonal, and organizational issues that are relevant to the behavior and performance of astronaut crews and ground support personnel and (b) to make recommendations for future human space missions, including both transit and planetary surface operations involving the Moon or Mars. The focus will be on long-duration missions lasting at least six weeks, when important psychological and interpersonal factors begin to take their toll on crewmembers. This information is designed to provide guidelines for astronaut selection and training, in-flight monitoring and support, and post-flight recovery and re-adaptation.  相似文献   

3.
In the past, space life sciences has focused on gaining an understanding of physiological tolerance to spaceflight, but, for the last 10 years, the focus has evolved to include issues relevant to extended duration missions. In the 21st century, NASA's long-term strategy for the exploration of the solar system will combine the assurance of human health and performance for long periods in space with investigations aimed at searching for traces of life on other planets and acquiring fundamental scientific knowledge of life processes. Implementation of this strategy will involve a variety of disciplines including radiation health, life support, human factors, space physiology and countermeasures, medical care, environmental health, and exobiology. It will use both ground-based and flight research opportunities such as those found in current on-going programs, on Spacelab and unmanned biosatellite flights, and during Space Station Freedom missions.  相似文献   

4.
《Acta Astronautica》2007,60(4-7):512-517
The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.  相似文献   

5.
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

6.
A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.  相似文献   

7.
《Acta Astronautica》2009,64(11-12):1337-1342
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

8.
Manzey D 《Acta Astronautica》2004,55(3-9):781-790
Human exploratory missions to Mars represent the most exciting future vision of human space flight. With respect to the distance to travel and mission duration, these missions will provide unique psychological challenges that do not compare to any other endeavor humans ever have attempted. The present paper presents outcomes of two recent projects sponsored by the European Space Agency--Humex and Reglisse--where these challenges and risks have been analyzed in some detail, and where concepts for future research have been developed. This presentation involves three steps. At first, it will be shown that our current psychological knowledge derived from orbital spaceflight and analogue environments is not sufficient to assess the specific risks of mission into outer space. Secondly, new psychological challenges of missions to Mars will be identified with respect to three different areas: (1) individual adaptation and performance, (2) crew interactions, and (3) concept and methods of psychological countermeasures. Finally, different options and issues of preparatory psychological research will be discussed.  相似文献   

9.
Science return and high bandwidth communications are one of the key issues to support the foreseen endeavours on next generation missions [J.L. Gerner, Telemetry, tracking and command of satellites—a perspective, TT&C 2004 Workshop, 7–9 September 2004]. Interplanetary telecommunication systems are required that support the foreseen endeavours. Given the same constraints in terms of mass, power and volume a laser communications terminal can offer an increase in telemetry bandwidth over classical RF technology allowing for a variety of new options, specifically to missions that require large distances, such as to the Moon, to liberation points L1 and L2, ultimately aiming at deep space missions. An increase in telemetry data rate allows the mission to consider the processing of raw scientific data to take place on ground, making use of latest technology further developed during the cruise phase of the probe, rather than applying data pre-processing on-board the satellite. Enhanced sensing techniques that generate more science data return could be used and access to data during flight could be faster. Results of on-going activities will be presented, comprising PPM laser communications and advanced tracking concepts. An overview will be given of the system concept for an integrated RF-optical TT&C transponder. Results will be shown from hardware tests on communications performance in inter-island test campaigns.  相似文献   

10.
At high cabin pressure [e.g. 1013 hPa (14.7 psi) 21% O2] there are serious issues relative to specification of suit pressure and the need for prebreathing. A high pressure suit will be costly but use of the existing, flexible suit requires up to 6 h of prebreathing. Or one could use a cabin pressure of 700 hPa (10.2 psi) prior to extravehicular activity (EVA) in order to use the existing suit with only 1 h of prebreathing. If these normal cabin pressures and O2 levels are utilized, existing physiological and medical databases apply, providing a known basis for evaluating effects of long duration space missions. If a 345 hPa (5 psi), 70-100% O2 atmosphere is adopted the existing suit can be used with no prebreathing required. However, there is no reference database on physiological effects under the conditions of lower pressure and higher O2 concentration. This paper considers the major issues involved in defining habitat pressure, O2 fraction, and EVA suit design for operations in space. A preliminary model for evaluating habitat/suit pressure and O2% strategies is presented.  相似文献   

11.
《Acta Astronautica》2010,66(11-12):1772-1782
Science return and high bandwidth communications are one of the key issues to support the foreseen endeavours on next generation missions [J.L. Gerner, Telemetry, tracking and command of satellites—a perspective, TT&C 2004 Workshop, 7–9 September 2004]. Interplanetary telecommunication systems are required that support the foreseen endeavours. Given the same constraints in terms of mass, power and volume a laser communications terminal can offer an increase in telemetry bandwidth over classical RF technology allowing for a variety of new options, specifically to missions that require large distances, such as to the Moon, to liberation points L1 and L2, ultimately aiming at deep space missions. An increase in telemetry data rate allows the mission to consider the processing of raw scientific data to take place on ground, making use of latest technology further developed during the cruise phase of the probe, rather than applying data pre-processing on-board the satellite. Enhanced sensing techniques that generate more science data return could be used and access to data during flight could be faster. Results of on-going activities will be presented, comprising PPM laser communications and advanced tracking concepts. An overview will be given of the system concept for an integrated RF-optical TT&C transponder. Results will be shown from hardware tests on communications performance in inter-island test campaigns.  相似文献   

12.
13.
Fry RJ 《Acta Astronautica》1994,32(11):735-737
At the beginning of the space age the dangers of hurtling into space were considerable. Despite this fact, radiation risks were examined in the U.S.S.R. and the U.S.A. and recommendations were made to limit the exposure of the crews to radiation. To date the radiation exposures of crews on missions in low-Earth orbits have been low. Now that missions in low-Earth orbit are becoming longer in duration and new missions into deep space are being considered, radiation protection guidelines become more important. Recently the estimates of the risks of radiation-induced cancer have been increased and new guidelines on radiation exposure limits for crew members must be developed. For deep space missions the guidelines take into account the risks posed by heavy ions. Unfortunately, knowledge about these risks is insufficient. If the new risk estimates are applied, current career dose limits may have to be reduced by a factor of two.  相似文献   

14.
Overview of the legal and policy challenges of orbital debris removal   总被引:1,自引:1,他引:1  
Brian Weeden   《Space Policy》2011,27(1):38-43
Much attention has been paid recently to the issue of removing human-generated space debris from Earth orbit, especially following conclusions reached by both NASA and ESA that mitigating debris is not sufficient, that debris-on-debris and debris-on-active-satellite collisions will continue to generate new debris even without additional launches, and that some sort of active debris removal (ADR) is needed. Several techniques for ADR are technically plausible enough to merit further research and eventually operational testing. However, all ADR technologies present significant legal and policy challenges which will need to be addressed for debris removal to become viable. This paper summarizes the most promising techniques for removing space debris in both LEO and GEO, including electrodynamic tethers and ground- and space-based lasers. It then discusses several of the legal and policy challenges posed, including: lack of separate legal definitions for functional operational spacecraft and non-functional space debris; lack of international consensus on which types of space debris objects should be removed; sovereignty issues related to who is legally authorized to remove pieces of space debris; the need for transparency and confidence-building measures to reduce misperceptions of ADR as anti-satellite weapons; and intellectual property rights and liability with regard to ADR operations. Significant work on these issues must take place in parallel to the technical research and development of ADR techniques, and debris removal needs to be done in an environment of international collaboration and cooperation.  相似文献   

15.
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities.  相似文献   

16.
Canada is a space power with unique technical niches that support opportunities for collaboration on space technologies. When U.S.-origin space technologies are involved Canada's ability to collaborate internationally may be conditional on US law and policy. As a result, US export control law can be directly linked to the success or failure of Canadian collaboration. This article examines the strategic impact of U.S. export controls on Canadian autonomy to collaborate on international missions, including multi-use missions. Canadian space export control policy is also examined more broadly with the goal of providing specific policy recommendations that will enhance Canada's future as an international space actor.  相似文献   

17.
气动减速技术能在耗费较少燃料的情况下,使探测器顺利进入预定环绕轨道.面向气动减速技术的深空探测器迎风面需要承受较高的气动热负荷与气动力,使得迎风面热控材料的耐热与耐冲击能力成为探测器设计的关键.文章对国外相关应用实例进行了调研和综述,并在此基础上总结了此类深空探测器热控系统的设计特点,可为气动减速技术在我国深空探测任务...  相似文献   

18.
Why we need a space elevator   总被引:2,自引:1,他引:1  
The goals of and vision for development of a space elevator have been discussed repeatedly. However, why we should develop one has been glossed over. This paper will focus upon the major issue—why build a space elevator infrastructure? It considers why we need a space elevator, what missions it would enable and how far it would reduce costs. There is no doubt that some major missions would be enhanced or significantly enabled by a space elevator infrastructure. Global communications, energy, monitoring of the Earth, global/national security, planetary defense, and exploration beyond low-Earth orbit are a few examples. In the end, if we are serious about extending space development and avoiding limitations on the human spirit, the reason we should build a space elevator is because we must!  相似文献   

19.
Far-reaching social and political issues are implicit in any discussion of large-scale space development. This Viewpoint argues that the evolution of appropriate political institutions to deal with these issues is likely to be at least as important as the development of new technology. If large-scale space development is to take place, global international cooperation will be essential and such cooperation will have to be underpinned by enhanced institutional and legal structures. In the shorter term, an appropriate institutional response may be the creation of a World Space Agency. However, in the longer term, we should probably view a world space programme as falling within that class of global concerns that would be most appropriately managed by a federal world government.  相似文献   

20.
The potential benefits to humankind of space exploration are tremendous. Space is not only the final frontier but is also the next marketplace. The orbital space above Earth offers tremendous opportunities for both strategic assets and commercial development. The critical obstacle retarding the use of the space around the Earth is the lack of low cost access to orbit. Further out, the next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next 30 years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. Both of these missions will change the outlook and perspective of every human being on the planet. However, these missions are expensive and extremely difficult. Chemical propulsion has demonstrated an inability to achieve orbit cheaply and is a very high-risk option to accomplish the Mars mission. An alternative solution is to develop a high performance propulsion system. Nuclear propulsion has the potential to be such a system. The question will be whether humanity is willing to take on the challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号