首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
嵌套闭磁场结构内CME产生和传播的数值模拟   总被引:3,自引:3,他引:0  
给出了特殊类型的日冕物质抛射(CME)数值模拟定性结果,这种CME核心闭磁场结构前半部分磁力线的方向与太阳整体偶极场磁力线的方向相反.计算结果表明,这种CME核心闭磁场结构磁力线与太阳整体偶极场反向磁力线之间存在过渡磁场结构,在向外传播时过渡磁场结构所占的面积逐渐增大.这一结果可以用来解释飞船为什么能够观测到一类双极磁云,这类磁云前半部分磁场方向与太阳整体偶极场方向相反.为了模拟这一数值结果,强调需要采用包含嵌套闭磁场的冕流背景结构,并在合适的位置触发CME.  相似文献   

2.
在子午面内,偶极子场和六极子场适当叠加得到势磁场,势磁场与太阳风长时间相瓦作用得到特殊的冕流背景结构.在这种背景结构下,两个较小尺度的磁螺旋线管模型能够连续浮入到计算域,在计算域内相互作用,触发了日冕物质抛射(CME).在数值模拟这一过程时,较小尺度的磁螺旋线管模型具有同心圆形磁场结构,模型中心等离子压强与边界压强之比m=2,模型的半径分别取为a=0.07 R.和a=0.1 Rs(Rs为太阳半径).在这两种情况下,得到了两种典型的计算结果.当a=0.07 Rs时,两个磁螺旋线管模型相瓦作用,在7 Rs内融合成一个磁螺旋线管模型,向外传播;当a=0.1 Rs时,两个磁螺旋线管模型相互作用,作为一个整体向外传播,在计算域内没有融合到一起,基本上保持各自的磁场结构.   相似文献   

3.
通过偶极子场和六极子场适当叠加,改进猜解磁场,使猜解磁场在太阳南北极符号相反,然后采用理想磁流体力学方程组(MHD),由猜解磁场与太阳风流动相互作用计算出稳态自洽解,得到定性上与观测比较接近的具有两个冕流的背景结构.在两个冕流间采用具有同心圆磁场位形的触发模型触发CME事件,研究CME的日冕传播特征.模拟结果表明,CME被约束在两冕流间传播,CME闭磁场位形和磁云横截面磁场位形相似,可以解释1AU处观测磁云的部分特征;在CME附近,存在压力和Lorentz力起主要作用的区域,这可以为分析1AU处CME事件的观测数据提供帮助.  相似文献   

4.
基于解析和数值相结合的方法,进一步讨论了非均匀引力场中日冕的二维磁流体动力学平衡。对临界点进行了比较仔细的处理。得到了包含闭场区、中性片和开场区的大尺度日冕磁场位形,闭场区和中性片构成冕流结构。在高纬和低纬地区几个太阳半径之外,等离子体径向流动速度超过了局地声速和局地Alfvén速度。在1AU处,太阳风速度可达到400kms-1以上   相似文献   

5.
来自电离层的尾向流对近地磁场位形的影响   总被引:3,自引:2,他引:1  
探测一号(TC-1)卫星的观测结果表明,尾向流能够拉伸近地磁尾的磁力线,从而导致磁场位形改变.尾向流具有垂直于磁场的速度分量,这种垂直磁场的速度分量会导致磁力线向尾向拉伸,磁场的结构由偶极型变为非偶极型.而随尾向流的终止,地向流的出现,磁场的结构由非偶极型变为偶极型,磁力线恢复原状.另外在磁场的结构由非偶极型变为偶极型的过程中,伴随磁能的释放热离子温度的迅速升高,温度由各向同性逐渐趋向各向异性.其次,观测结果显示来自电离层的尾向流对磁场By分量有重要的影响,能够引起磁场By分量的显著增强.上述分析结果表明来自电离层的尾向流对近地磁尾动力学过程有着重要的影响.   相似文献   

6.
三维试验粒子轨道法在磁层粒子全球输运中的应用   总被引:1,自引:1,他引:0  
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

7.
磁场强度对日冕定态结构的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
以二维MHD模型及时变方法为基础,内外边界完整的设影特征线边界条件,考察了太阳日冕大气的定态结构随偶极场强度的变化情况。模拟结果表明:随着偶极场强度的增加,磁场对太阳风的约束增强,低纬闭磁场打开程度减少,高纬与低纬区速度差增加,并且在阿尔文马赫数为1的点附近达到最大,速度过度区变陡;随着日心距离增加,低纬区宽度减小,速度过渡区变陡,可定性解释Ulysses飞船的新观测事实。  相似文献   

8.
利用守恒型TVD格式对8波模型磁流体方程组进行数值模拟, 对磁尾中偶极化锋面的物理和演化特性进行研究. 构建了由BBF类型通量管机制产生的偶极化锋面数值模拟模型, 该模型由磁尾平衡模型、亚暴增长相模型和亚暴触发及BBF形成模型三部分组成. 数值模拟结果很好地再现了磁尾中BBF类型通量管机制产生的偶极化锋面特性. 伴随着高速 流的出现, 磁场Bz分量呈非对称双极变化结构, 即锋面前减小为负值, 在锋面上急剧增大. 当Bz增大到极大值后回落并趋于稳定. 随着偶极化锋面伴随地向高速流向地球运动, 偶极化锋面上Bz的变化越来越小.   相似文献   

9.
以2004年9月28日02:53:20 UT的亚暴为例, 通过TC-1在磁尾约12.5 Re 和Geotail卫星在近地磁尾等离子体片约8~9 Re的联合观测, 研究亚暴触发过程中近地磁尾等离子体片中等离子体波动特征. 结果表明, 亚暴触发区是近地磁尾中心等离子体片中较小的一个区域, 在亚暴触发区中低混杂不稳定性在近地磁尾等离子体片中存在, 准垂直传播的低混杂波发生在亚暴触发过程中, 而亚暴触发过程中近地磁尾等离子体片外边界区内的磁场偶极化信号和扰动都非常微弱. 在亚暴触发和亚暴膨胀相过程中出现了多次具有不同特征的磁场偶极化现象.   相似文献   

10.
2004年10月12日,在01:30—04:30 UT期间,位于向阳侧磁层顶附近的Geotail卫星探测到行星际磁场为持续南向.此太阳风条件驱动了一个小磁暴,Sym-H指数在04:12 UT达到最小值-33 nT.在磁暴主相期间,AE指数维持在较高的水平,其最大值达400 nT.02:00—03:00 UT期间,TC-1卫星在近地磁尾(-10.6,3.2,-0.1)R_e处观测到明显的亚暴膨胀相特征和磁场偶极化过程.在偶极化前1 min,有较强的(v_x<-100 km/s)持续时间超过3 min的尾向流发生.分析发现该尾向流具有低温、高密度和沿磁场流动的特点,这说明尾向流具有来源于电离层风的特征.尾向流期间,TC-1观测的磁场分量B_x和总的磁场强度增加,磁倾角减小,磁场结构变成非偶极型,说明尾向流对磁场结构有一定的影响,文中尝试给出了相应的物理解释.观测表明,该事例中的近地磁尾尾向流可能对磁场偶极化过程的发生有重要意义.  相似文献   

11.
A series of three flares of GOES class M, M and C, and a CME were observed on 20 January 2004 occurring in close succession in NOAA 10540. Types II, III, and N radio bursts were associated. We use the combined observations from TRACE, EIT, Hα images from Kwasan Observatory, MDI magnetograms, GOES, and radio observations from Culgoora and Wind/ WAVES to understand the complex development of this event. We reach three main conclusions. First, we link the first two impulsive flares to tether-cutting reconnections and the launch of the CME. This complex observation shows that impulsive quadrupolar flares can be eruptive. Second, we relate the last of the flares, an LDE, to the relaxation phase following forced reconnections between the erupting flux rope and neighbouring magnetic field lines, when reconnection reverses and restores some of the pre-eruption magnetic connectivities. Finally, we show that reconnection with the magnetic structure of a previous CME launched about 8 h earlier injects electrons into open field lines having a local dip and apex (located at about six solar radii height). This is observed as an N-burst at decametre radio wavelengths. The dipped shape of these field lines is due to large-scale magnetic reconnection between expanding magnetic loops and open field lines of a neighbouring streamer. This particular situation explains why this is the first N-burst ever observed at long radio wavelengths.  相似文献   

12.
太阳风与地磁场相互作用形成的磁层顶对磁层内磁场有重要影响。本文假定地磁场为偶极子,太阳风为理想导体,在太阳风与磁层的边界上满足磁场法向分量为零的边界条件。采用最小二乘法求得磁层顶电流在磁层内产生的磁场的球谐系数。从计算结果可以看出磁层顶对磁层磁场的影响。结果表明,向阳面的磁场、中性点、极光区的位置与形状与实际观测比较接近;磁尾磁场与实际观测相差较远,原因是没有加上磁尾片电流。文中还给出了太阳风与地磁轴交不同角度时的磁层磁场的计算结果。   相似文献   

13.
采用三维模型,使用混合网格质点法HPIC(Hybrid Particle-in-Cell)对膨胀的磁场和太阳风相互作用过程进行数值模拟.研究了线圈产生的偶极子磁场在注入等离子体后和太阳风粒子的相互作用过程,并对以不同速度入射的等离子体引起的太阳风粒子的变化和磁场变化进行了比较.研究结果表明,偶极子磁场和太阳风作用时会产生弓形激波,此时磁压等于太阳风粒子的动压,当向线圈产生的偶极子磁场中注入高能等离子体时引起磁场膨胀,膨胀的磁场将会排斥太阳风粒子向外运动,从而引起弓形激波的变化,增大与太阳风相互作用的面积,并且粒子入射速度越大,磁场膨胀越明显,与太阳风相互作用愈强.   相似文献   

14.
基于1996-2005年88个引起重大地磁暴的CME(日冕物质抛射)事件、1996-2000年的47个CME事件以及1997-2002年的29个全晕状CME事件,结合ACE卫星在1AU处的太阳风和行星际磁场观测资料以及Wilcox Solar Observatory(WSO)天文台的太阳光球层磁图,分析了背景太阳风速度和日球电流片对CME到达1AU处渡越时间预报误差的影响.结果表明,背景太阳风速度与CME渡越时间误差并没有明显的相关性,在考虑了磁云通量管轴相对黄道面夹角的影响后相关性依然不明显.然而日球电流片对CME渡越时间却有明显的影响,对于初速度较小的异侧CME事件,其渡越时间大于同侧事件;而对于具有较大初速度的CME事件,异侧事件的渡越时间明显小于同侧事件.研究结果表明,CME与太阳风以及日球电流片的相互作用并不是简单的对流相互作用,造成高速CME异侧事件快于同侧事件到达地球的因素非常复杂,有待深入研究.   相似文献   

15.
The study concerns the streamer belt observed at high spectral resolution during the minimum of solar cycle 23 with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model, in order to define the streamer boundary and to analyse the edges of coronal holes. The results of the analysis allow an accurate identification of the source regions of the slow coronal wind that are confirmed to be along the streamer boundary in the open magnetic field region.  相似文献   

16.
The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs, (Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the He-liospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs. The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax> 10cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line (sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax> 10cm-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号