首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
A New Hybrid Control Scheme for an Integrated Helicopter and Engine System   总被引:1,自引:1,他引:0  
A new hybrid control scheme is presented with a robust multiple model fusion control(RMMFC) law for a UH-60 helicopter and an active disturbance rejection control(ADRC) controller for its engines.This scheme is a control design method with every subsystem designed separately but fully considering the couplings between them.With three subspaces with respect to forward flight velocity,a RMMFC is proposed to devise a four-loop reference signal tracing control for the helicopter,which escapes the closed-loop system from unstable state due to the extreme complexity of this integrated nonlinear system.The engines are controlled by the proposed ADRC decoupling controller,which fully takes advantage of a good compensation ability for unmodeled dynamics and extra disturbances,so as to compensate torque disturbance in power turbine speed loop.By simulating a forward acceleration flight task,the RMMFC for the helicopter is validated.It is apparent that the integrated helicopter and engine system(IHES) has much better dynamic performance under the new control scheme.Especially in the switching process,the large transient is significantly weakened,and smooth transition among candidate controllers is achieved.Over the entire simulation task,the droop of power turbine speed with the proposed ADRC controller is significantly slighter than with the conventional PID controller,and the response time of the former is much faster than the latter.By simulating a rapid climb and descent flight task,the results also show the feasibility for the application of the proposed multiple model fusion control.Although there is aggressive power demand in this maneuver,the droop of power turbine speed with an ADRC controller is smaller than using a PID controller.The control performance for helicopter and engine is enhanced by adopting this hybrid control scheme,and simulation results in other envelope state give proofs of robustness for this new scheme.  相似文献   

2.
In order to test the feasibility of a new thrust stand system based on impulse thrust mea- surement method, a liquid-fueled pulse detonation engine (PDE) is designed and built. Thrust per- formance of the engine is obtained by direct thrust measurement with a force transducer and indirect thrust measurement with an eddy current displacement sensor (ECDS). These two sets of thrust data are compared with each other to verify the accuracy of the thrust performance. Then thrust data measured by the new thrust stand system are compared with the verified thrust data to test its feasibility. The results indicate that thrust data from the force transducer and ECDS system are consistent with each other within the range of measurement error. Though the thrust data from the impulse thrust measurement system is a litter lower than that from the force transducer due to the axial momentum losses of the detonation jet, the impulse thrust measurement method is valid when applied to measure the averaged thrust of PDE. Analytical models of PDE are also discussed in this paper. The analytical thrust performance is higher than the experimental data due to ignoring the losses during the deflagration to detonation transition process. Effect of equivalence ratio on the engine thrust performance is investigated by utilizing the modified analytical model. Thrust reaches maximum at the equivalence ratio of about 1.1.  相似文献   

3.
Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles, because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets). Windmill start is a common air-starting mode used in micro turbine engine. The windmill starting characteristics are important to the practical use of micro turbine engine. In this paper, the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment and numerical simulation. The characteristic of rotor mechanical losses at low-speed condition is stud- ied, and the engine common working line of windmill starting process is obtained. Based on the engine windmill characteristics, the propane ignition characteristics under different inflow conditions are researched, and the envelope of propane ignition and propane flameout is determined. The experimental research of fuel supply and ignition characteristics is completed, and the envelope of fuel supply and ignition is obtained. The windmill stage, propane ignition stage, fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized, and the optimization windmill starting parameters are collected. The successful wind-mill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable. All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters, and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.  相似文献   

4.
In this research, a GPA(Gas Path Analysis) diagnostic system enhanced with GPA Index is described for gas path sensor and component fault diagnosis.A method of measurement correction is used in order that the measurement data obtained at un-standard ambient and operating conditions can be used for diagnostic analysis.The developed diagnostic system has been implemented into a Cranfield University gas turbine performance and diagnostic analysis software PYTHIA for gas turbine performance degradation analysis.The developed method and software have been applied to a model aero gas turbine engine to test the effectiveness of the system.The analysis shows that the developed diagnostic system can diagnose degraded sensor and components effectively using performance deviation measured at un-standard ambient and operational conditions.Theoretically, the idea of the diagnostic approach can be applied to different gas turbine engines.   相似文献   

5.
The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth contro...  相似文献   

6.
The aircraft engine multi-loop control system is described and the switching control theory is introduced to solve the regulating and protecting control problems in this paper. The aircraft engine multi-loop control system is firstly described and the control problems are formulated. Secondly, the theory of the smooth switching control is devoted and a new extended scheme for the smooth switching of a switched control system is introduced. Then, for the key technologies of aero-engines switching control, a design algorithm is presented which can determine which candidate controller should be put in feedback with the plant to achieve a desired performance and the procedure to design the aircraft engine multi-loop control system is detailed. The switching performance objectives and the switching scheme are given and a family of PID controllers and compensators is designed. The simulation shows that using the switching control design method can not only improve the dynamic performance of the aircraft engine control system and reduce the switching times, but also guarantee the stability in some peculiar occasions.  相似文献   

7.
Parametric study of turbine NGV blade lean and vortex design   总被引:1,自引:1,他引:0  
《中国航空学报》2016,(1):104-116
The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha-nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.  相似文献   

8.
A new water-cooling Gardon-type heat power measuring apparatus is designed to meet the need of heat power source management and distribution. The steady state measurement mathematic model of the apparatus is built up in theory and the system amplification coefficient is defined as the ratio of the heat power to the temperature difference of the device, with which the value of the measured source power can be calculated easily with the corresponding temperature difference. In order to obtain an optimal heat power measuring system, the coefficients that can influence the relationship between the amplification coefficient, the temperature difference, and the heat power are analyzed. On the basis of these analyses, a set of experimental device is constructed and a number of experiments are carried on. Compared with the input heat power sample data, the error of the experimental measuring results is less than ±2%, and the experimental measuring values are in good agreement with the calculated theoretical ones. The heat power measuring apparatus can be applied in heat flux or heat power measurement in other fields due to its simple structure and high accuracy.  相似文献   

9.
In order to ensure the safety of engine life limited parts (ELLP) according to airworthiness regulations, a numerical approach integrating one-way fluid structure interaction (FSI) and probabilistic risk assessment (PRA) is developed, by which the variation of flow parameters in a rotor-stator cavity on the safety of gas turbine disks is investigated. The results indicate that the flow parameters affect the probability of fracture of a gas turbine disk since they can change the distribution of stress and temperature of the disk. The failure probability of the disk rises with increasing rotation Reynolds number and Chebyshev number, but descends with increasing inlet Reynolds number. In addition, a sampling based sensitivity analysis with finite difference method is conducted to determine the sensitivities of the safety with respect to the flow parameters. The sensitivity estimates show that the rotation Reynolds number is the dominant variable in safety analysis of a rotor-stator cavity among the flow parameters.  相似文献   

10.
The acceleration performance of a turbojet is one of its important characteristics. In terms of control system, the engine is a controlled object. The acceleration performance not only depends on the engine, but also on the controller; therefore both the engine and the controller must be combined in a control system to make research for this performance. This paper presents a mathematical model of the turbojet acceleration control system and digital simulation method. Because the engine acceleration is a large variation transient process, the models of the engine and the controller are described by nonlinear equations. The methods of solving nonlinear equations and iterative techniques of calculating acceleration control system are discussed in this paper. The calculated results, as compared with test results, show that the simulation for this system is satisfactory.  相似文献   

11.
设计、集成了由涡轮增压器、脉冲爆震燃烧室、燃油供给单元、润滑单元和测控单元构成的混合式脉冲爆震发动机原理性试验系统。初步实验研究表明该系统运行可靠。当脉冲爆震燃烧室与涡轮组合工作时,可在一定频率范围内稳定工作;爆震室头部及管壁沿程压力相对于爆震室独立工作时有所提高;压气机出口空气流量远大于爆震室进口空气流量,证明利用压气机给爆震室供气是可行的。在5Hz爆震频率下,涡轮被爆震产物冲击20min后,叶片没有任何烧蚀和裂纹出现。  相似文献   

12.
脉冲爆震燃烧室与冲击式涡轮匹配机理及效率的数值研究   总被引:1,自引:1,他引:0  
针对脉冲爆震燃烧室(PDC)与涡轮共同工作时,涡轮入口为强非稳态气流的特点,结合涡轮损失机理,确定适合脉冲爆震来流的涡轮类型并开展气动设计工作,运用数值方法计算所设计涡轮的效率和探究PDC与涡轮相互作用的机理。研究结果表明:部分进气、小反力度的冲击式涡轮更适合脉冲爆震来流;在喷嘴收缩段、动叶叶片前缘以及动叶压力面生成向上游传播的反射激波,造成能量损失;在设计点,涡轮效率约为75%。上述研究结果可以为脉冲爆震涡轮发动机的涡轮设计提供一定的参考。   相似文献   

13.
脉冲爆震涡轮发动机原理性试验研究   总被引:4,自引:0,他引:4  
为研究脉冲爆震燃烧室与涡轮及压气机三者相互匹配的详细机理,建立了脉冲爆震涡轮发动机原理性试验系统,其主要由脉冲爆震燃烧室、涡轮增压器、润滑系统、发动机测控系统等组成。在该试验系统上开展了脉冲爆震涡轮发动机原理性试验研究。首次实现了由脉冲爆震燃烧室驱动涡轮,涡轮带动压气机,压气机压缩空气供给爆震室的全闭环自吸气工作模式。试验结果表明:脉冲爆震涡轮发动机能在自吸气模式下持久、稳定地工作,爆震室与涡轮及压气机三者匹配良好,验证了用脉冲爆震燃烧室替代传统等压燃烧室的可行性。  相似文献   

14.
介绍了弹用涡扇发动机气动稳定性计算的基本方法和评定流程。给出了进气畸变、附加功率提取、附加引气、加速过程对弹用涡扇发动机气动稳定性影响的计算分析模型。其中,进气畸变对发动机气动稳定性影响的计算采用平行压气机模型,基于李亚普诺夫理论的方法完成;附加引气、功率提取对发动机气动稳定性的影响采用通过对发动机转子间质量、动量、能量守恒方程进行修正的方法进行;加速过程对发动机气动稳定性的影响采用欧拉方法求解动态的质量、动量、能量守恒方程的方法完成;最后采用“层叠”的方法进行各种降稳因素的综合评估。通过比较可以看出,进气畸变是弹用涡扇发动机主要的降稳因素。  相似文献   

15.
To reveal the radical recombination process in the scramjet nozzle flow and study the effects of various factors of the recombination, weighted essentially non-oscillatory(WENO)schemes are applied to solve the decoupled two-dimensional Euler equations with chemical reactions to simulate the hydrocarbon-fueled scramjet nozzle flow. The accuracy of the numerical method is verified with the measurements obtained by a shock tunnel experiment. The overall model length is nearly 0.5 m, with inlet static temperatures ranging from 2000 K to 3000 K, inlet static pressures ranging from 75 k Pa to 175 k Pa, and inlet Mach numbers of 2.0 ± 0.4 are involved.The fraction Damkohler number is defined as functions of static temperature and pressure to analyze the radical recombination progresses. Preliminary results indicate that the energy releasing process depends on different chemical reaction processes and species group contributions. In hydrocarbon-fueled scramjet nozzle flow, reactions with H have the greatest contribution during the chemical equilibrium shift. The contrast and analysis of the simulation results show that the radical recombination processes influenced by inflow conditions and nozzle scales are consistent with Damkohler numbers and potential dissociation energy release. The increase of inlet static temperature improves both of them, thus making the chemical non-equilibrium effects on the nozzle performance more significant. While the increase of inlet static pressure improves the former one and reduces the latter, it exerts little influence on the chemical non-equilibrium effects.  相似文献   

16.
Recently, non-equilibrium plasma assisted combustion (PAC) has been found to be promising in reducing the ignition delay time in hypersonic propulsion system. NO x produced by non-equilibrium plasma can react with intermediates during the fuel oxidation process and thereby has influence on the combustion process. In this study, the effects of NO x addition on the ignition process of both the homogeneous ethylene/air mixtures and the non-premixed diffusion layer are examined numerically. The detailed chemistry for ethylene oxidization together with the NO x sub-mechanism is included in the simulation. Reaction path analysis and sensitivity analysis are conducted to give a mechanistic interpretation for the ignition enhancement by NO x addition. It is found that for both the homogenous and non-premixed ignition processes at normal and elevated pressures, NO 2 addition has little influence on the ignition delay time while NO addition can significantly promote the ignition process. The ignition enhancement is found to be caused by the promotion in hydroxyl radical production which quickly oxidizes ethylene. The promotion in hydroxyl radical production by NO addition is achieved in two ways:one is the direct production of OH through the reaction HO2+NO = NO2+OH, and the other is the indirect production of OH through the reactions NO+O2=NO2+O and C2H4+O = C2H3+OH. Moreover, it is found that similar to the homogeneous ignition process, the acceleration of the diffusion layer ignition is also controlled by the reaction HO2+NO = NO2+OH.  相似文献   

17.
脉冲爆震燃烧室与涡轮相互作用的试验   总被引:3,自引:3,他引:0  
采用汽油和空气作为燃料和氧化剂,进行了脉冲爆震燃烧室(PDC)与涡轮相互作用的原理性模型试验装置的试验.试验结果表明:PDC工作平稳,在发动机爆震工作时压气机出口空气质量流量比用于PDC产生爆震的空气质量流量大100kg/h左右;在PDC出口前已形成充分发展的爆震波,压力波经过涡轮膨胀后峰值压力和波速明显降低;且充填系数越大,各位置处的平均峰值压力越高,压力波经过涡轮后的衰减越小;涡轮在经受累计40多分钟共12 000多次脉冲爆震波或压力波的冲击后仍然完好无损.  相似文献   

18.
脉冲爆震涡轮发动机研究进展   总被引:7,自引:5,他引:2  
介绍了脉冲爆震涡轮发动机的基本概念、主要结构形式以及基本特点.详细介绍了国内外研究状况及课题组的最新研究进展,对脉冲爆震涡轮发动机需要突破的关键技术、主要研究内容以及发展途径进行了探讨.研究表明:相比于传统的涡轮喷气发动机,脉冲爆震涡轮发动机的耗油率能降低5%~15%;在相同的燃烧室入口条件下,与等压燃烧驱动涡轮相比,用脉冲爆震燃烧驱动涡轮时的涡轮的单位输出功率要高;实现了由脉冲爆震燃烧室驱动涡轮,涡轮带动压气机给脉冲爆震燃烧室供气的自吸气模式,表明用脉冲爆震燃烧室代替传统等压燃烧室是完全可行的.  相似文献   

19.
To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique(SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10 5s 1to 5 · 10 7s 1, and becomes stable when strain rate is lower than 5 · 10 7s 1. SCC propagation of the steel in the solution at open circuit potential(OCP) needs sufficient hydrogen which is supplied at a certain strain rate.Fracture surface at OCP has similar characteristics with that at cathodic polarization 1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking(HIC).All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution(AD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号