首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 132 毫秒
1.
太阳微波爆发动态频谱仪   总被引:2,自引:1,他引:1  
介绍了北京天文台已投入观测的1.0—20GHz,2.6—3.8GHz太阳射电频谱仪及1999年投入观测的5.2—76GHz太阳射电频谱仪。它们是第23周太阳活动峰年我国太阳物理界的重要观测设备已投入观测的频谱仪获得不同类型的太阳射电爆发资料分别为171个和146个,这些事件在时间和频率上有丰富的幅度和结构的变化。不同太阳射电爆发反映太阳大气不同高度上耀斑的时间和空间的演化过程,为研究不同大气高度中耀斑物理动力学过程、能量释放、粒子加速提供了更多的依据。   相似文献   

2.
本文对太阳22周峰年期云南天文台日冕射电频谱仪观测到的60个快速事件作了分析。从中获得了尖峰辐射、增强噪暴、快速起伏、类尖峰、叠加脉冲五种快变型别,对它们的亮温度、叠加特性、特征时间、辐射源尺度、偏振特性以及辐射机制六个方面作了分析研究后,对射电爆发、缓变分量和宁静太阳的辐射特征参量也作了研究,从而得出基本分量特性。  相似文献   

3.
太阳射电爆发是一种潜在的导航系统干扰因素。通过导航信号模型推导,分析了其干扰导航信号的机理,提出太阳射电爆发干扰导航通信的影响方程与太阳射电爆发流量、接收机性能以及太阳–天线高度角有关,其中太阳射电流量总功率与信号的信噪比下降呈正相关;同时受到太阳–天线高度角和有效面积的制约,又与接收机环路滤波器响应函数呈卷积关系。通过对2003年10月28日、2006年12月6日和2015年11月4日事件中GPS失锁情况分析,发现同一次事件中同一站点不同接收机的失锁率不同;同一次事件中不同纬度的接收机失锁率不同,以及在同一次事件中L波段(1~2 GHz)太阳射电爆发频谱不均匀的条件下,L1和L2频段信号的信噪比下降情况也不同。从上述三个事件的观测表征验证了上述影响方程的分析正确性。  相似文献   

4.
本文分析了北京天文台2840MHz射电望远镜,1989年1月-1993年12月期间观测到的太阳射电爆发的显着事件与米波Ⅱ型、Ⅳ型爆发的对应关系,从相关结果来看,爆发的峰值流量越高△T越短,这说明当太阳流量越大,高达500s.f.u.以上时,Ⅱ型爆发会在爆发的峰值前后很短时间内发生,可能与粒子的加速有关。   相似文献   

5.
目前已有空间探测器对太阳的甚低频射电爆发进行的探测主要是频谱观测,针对太阳低频射电爆发的成像观测仍然是空白,利用空间矢量天线可以对太阳低频射电爆发(包括Ⅱ型和Ⅲ型暴)进行空间定位和一定的成像观测.研究针对空间(甚)低频射电探测器对太阳射电爆发的探测,提出了利用三极子矢量天线对太阳爆发进行定位的算法;基于部分空间甚低频设...  相似文献   

6.
本文介绍了太阳L260°活动概况,并计算了黑子群的位置漂移及对应的射电缓变源.北京天文台2.84GHz射电望远镜在该活动区观测到8次特大的射电爆发(流量超过1000s.f.u.),其中4次(1991年5月16日,6月9日,6月11日,8月25日)射电爆发时变曲线十分相似而且这些微波爆发都与Ⅱ型Ⅲ型Ⅳ型米波爆发有良好的对应.可能说明该活动区所对应的日冕在长时间内存在一种磁场位形结构,这种磁场位形结构容易产生日冕物质抛射.   相似文献   

7.
选用NOAA提供的太阳质子事件表以及SGD发表的与其相关的射电多波段的观测资料进行了统计分析,试图从厘米波,毫米波爆发与质子事件的关系上寻找规律,从而获得一些有意义的结果。  相似文献   

8.
本文对1989年4月9日与4B级大耀斑伴生的两个波段(3750 MHz,2840 MHz)的射电大爆发进行了简单的初步分析。结果表明:这两个波段的爆发不仅各自具有繁多的周期,而且都存在30+3s的准周期振荡。这种现象可能与磁环的准周期振荡有关,或与粒子流有关。   相似文献   

9.
本文讨论了1990年7月30日伴随日面2B级双带光学耀斑发生的3.2cm波微波大爆发事件的观测特征,它呈现为显著的脉动形态。并对它进行了数据处理,发现射电爆发流量S与脉动的特征参量:平均重复率R,调制度△S/S和能量△E之间有良好的统计相关性。对此作了讨论和初步的解释。  相似文献   

10.
1981年4月1日太阳发生一个4N级Hα耀斑并伴随出现强烈的IV型射电爆发.本文对北京天文台,西澳大利亚站等射电资料进行分析.分析表明:(1)该事件的微波源状态相对稳定,米波源位置存在移动,因此产生微波辐射与米波辐射是两组不同的电子群体,在爆发频谱指数的时变曲线上表现出明显的形态差异.还由于两者辐射源的位置不同,微波与米波的爆发在峰值时刻上也不完全符合.(2)4月1日微波大爆发是由三个主爆发组成的,它们的峰值时刻分别为0135.1,0146.1,0153.6UT.由射电高频端谱指数算出的非热电子能谱指数表明,在射电爆发的三个峰值时刻电子能谱都变硬.本文还得出该活动区的非热电子平均速度(以光速c为单位)β为0.9左右,磁场强度B为430G.并由回旋同步辐射阻尼算得,非热电子的寿命为829秒,这个数值与三个主峰的持续时间相吻合.  相似文献   

11.
Radio observations of the eclipse on November 3, 1994, were carried out at Chapecó, Brazil by using a decimetric spectrograph having high spectral and time resolution. The light curve shows that: (1) Time variation of the radio flux before the totality was more compared to that after. (2) During the totality radio emission at 1.5 GHz was observed. Advantage of high spatial resolution ( 3.2 arc sec) possible during solar eclipse enabled us to determine the height of radio emission at 1.5 GHz. (3) Microwave bursts were observed associated with metric Type III-RS bursts. The source size of one of the microwave bursts was 7 arc sec and its physical parameters have been estimated. (4) The time difference between radio and optical contacts suggested for the first time asymmetrical limb brightening at 1.5 GHz.  相似文献   

12.
In this work we make an analysis of significant periodicities shown by phenomena linked to solar activity such as coronal hole area, radio emission in the 10.7 cm band and sunspots. We use the wavelet method that gives information in the frequency and time domains. Of particular interest are the mid-term periodicities (1–2 yrs). Over the whole period, coronal holes and radio variations show an important annual variation and a quasi-biannual periodicity. The increase in these variations is most important around the years of maximum solar activity. When the time series are separated in low and high frequencies, the latter are modulated by the general solar cycle. Although somewhat shifted in frequency, these periodicities might well correspond with those found in cosmic ray intensity, solar magnetic flux and other terrestrial and interplanetary phenomena as a wavelet coherence analysis of these series with the solar magnetic flux reveals.  相似文献   

13.
The Frequency Agile Solar Radiotelescope (FASR), a telescope concept currently under study, will be a ground based solar-dedicated radio telescope designed and optimized to produce high resolution, high-fidelity, and high-dynamic-range images over a broad frequency range (0.1–24 GHz). As such, FASR will address an extremely broad science program, including the nature and evolution of coronal magnetic fields, the physics of flares, drivers of space weather, and the quiet Sun. An important goal is to mainstream solar radio observations by providing a number of standard data products for use by the wider solar physics community. The instrument specifications and the key science elements that FASR will address are briefly discussed, as well as several operational issues.  相似文献   

14.
We present the results of low frequency radio observations of the X-ray binaries, Cygnus X-1 and Cygnus X-3, during different X-ray states. The low frequency observations were made for the first time for these sources at 0.61 and 1.28 GHz using the Giant Meter-wave Radio Telescope (GMRT) between 2003 and 2004. Both Cyg X-1 and Cyg X-3 are highly variable at low radio frequencies. We also compare our data with the observations at 15 GHz conducted by the Ryle telescope. Spectral turnover is seen for both the sources below 2 GHz. The data suggest that the change in the radio flux density in both the sources is correlated to the X-ray hardness ratio and follows a similar behavior pattern.  相似文献   

15.
Measurements of midlatitude thermospheric neutral kinetic temperatures obtained from 1972 to 1979 have been used to investigate the effects of solar and geomagnetic activity, as well as long term effects, on the thermosphere. With these data a simple power law relationship between the temperature and solar activity (expressed as the 2.8 GHz solar radio flux) has been found to give a high correlation. In addition, a linear relationship between temperature changes and geomagnetic activity (expressed as Ap), as well as annual and semiannual effects have been found. The annual variation is found to be indistinguishable in phase from the annual variation of the solar declination angle. The present four parameter formulation gives a better fit to the data than is obtained with available empirical models of the thermosphere, and this has allowed us to investigate the properties and postulates of some of these models.  相似文献   

16.
Two homologous solar bursts were recorded on May 29, 1980 at 1028 UT and at 1147 UT from the Hale region 16864. The measurements were done at 8 mm wavelength at the Metsähovi Radio Research Station using a 14 meter radio telescope. The time series of the bursts were similar even in the small details. The rise time of both bursts was about 10 seconds and the peak flux density was 3.3 sfu at 1028 UT and 1.2 sfu at 1147 UT. Both bursts were composed of several elementary spikes which were typically 3 seconds apart from each other. The maximum of the gyro-synchrotron type spectrum was close to 15 GHz. The time profile of the bursts, elementary spikes and the frequency spectrum indicated that the origin of these homologous microwave bursts was in a magnetic structure with several loops and that the same complex loop structure was producing energy during both bursts.  相似文献   

17.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   

18.
The computed photoionization rates in the discrete wavelength bands in the XUV spectra under quiet sun, moderate flare, strong flare and outstanding flare conditions have been presented graphically as a function of altitude in the height range 50 – 90 km to show the relative importance of solar X-rays below 10 Å. Ionospheric absorption data, measured by A1 technique at the Ionosphere Research Centre at the University of Delhi, Delhi (28.6°N) at a single radio wave frequency of 2.132 MHz have been analyzed under solar flare conditions, with a special emphasis on a solar flare event on 3 February, 1983 which started at 1115 IST, reached its peak at 1140 IST and persisted till 1400 IST, during which time the radio wave absorption exceeded 60 or 65 dB for nearly three and half hours. During solar flare, a direct correlation between large enhancements of solar X-ray flux and ionospheric absorption is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号