首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

2.
地-月低能耗转移轨道中途修正问题研究   总被引:2,自引:0,他引:2  
何巍  徐世杰 《航天控制》2007,25(5):22-27
采用地-月低能耗转移轨道的探测器从地球停泊轨道转移到极月轨道一般需要3~4个月时间,这类转移轨道对入轨精度有较高的要求。本文对地月转移轨道中途修正问题进行了研究。文中结合地-月低能耗转移轨道的特点,给出一种分段式多目标多次中途修正方案。利用显式制导结合牛顿迭代,分别以地球和月球作为中心天体求解兰伯特问题,在假设探测器各种轨道误差的基础上进行了蒙特卡罗仿真。采用该方法一般需要3~5次中途修正能够满足月球探测器环月轨道入轨精度要求,整个转移过程燃料消耗小于传统地月转移轨道。文中给出的仿真结果验证了该方案的可行性。  相似文献   

3.
航天器异面气动力辅助变轨大气飞行段的最优轨迹   总被引:2,自引:0,他引:2  
本文研究航天器利用气动力辅助变轨实现由远地轨道向近地轨道异面转移问题,就航天器利用大气飞行实现减速及轨道平面机动提出了一种考虑过程约束存在时的优化设计方法。通过方案设计将函数优化问题转换成参数优化问题,并利用美国航天飞机数据进行了模拟计算,得到满意结果。  相似文献   

4.
Earth-approaching asteroids (Apollos and Amors) may be competitive candidates as raw materials for space manufacturing. The total energy per unit mass required to transfer material from some of these bodies to high Earth orbit is comparable to that for lunar material. Recent optical studies suggest ordinary and carbonaceous chondrite compositions for these asteroids, with some containing large quantities of metallic iron and nickel, and others, carbon, hydrogen and nitrogen. Discoveries of several new candidate asteroids over the next few years will allow for a better selection of materials and mission possibilities. Material from one of these asteroids, either in raw or manufactured form, could be returned to the vicinity of the Earth by a solar-powered mass-driver reaction engine. With a requirement of ~60 shuttle flights, and with minimal development costs, an automated mission to a 200-m dia. (107 ton) metal-rich asteroid could be carried out by a mass-driver tug assembled in low Earth orbit using shuttle tankage as reaction mass. Such a tug could, within a few years, move the asteroid into high Earth orbit for the manufacturing of ~ 20 satellite power stations using a portion of the asteroid itself as reaction mass. In the next few years over 100 asteroids in this size range could be discovered, orbits determined and composition types classified using existing earthbased and spaceborne search techniques.  相似文献   

5.
太阳电池阵等部件由于其表面介质的高二次电子发射及光电子发射特性,使得其在轨表面充电典型表现为反向电位梯度(inverted potential gradient, IPG)。为了评估航天器部组件在轨的表面充电风险,需要研究IPG的特点及在地面模拟IPG的方法。文章通过分析地球中高轨道与低轨道空间等离子体环境中表面充电的特点,提出了地面模拟IPG表面充电的方法,并给出典型试验结果。推荐中高轨道利用电子枪或紫外源、低轨道利用冷稠等离子体源模拟表面充电IPG;模拟过程中为了建立IPG,试样基底导电部位需要悬浮且有直流负偏压电源驱动;模拟IPG时需要针对试样尺度进行缩比补偿;文章给出的方法可用于一般太阳电池阵或其他在轨充电会产生IPG的试样开展地面模拟及静电放电防护性能评价试验。  相似文献   

6.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for decades. Exterior and interior transfers, based on the transit through the regions where the collinear libration points are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is concerned with a geometrical approach for low-energy Earth-to-Moon mission analysis, based on isomorphic mapping. The isomorphic mapping of trajectories allows a visual, intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Two types of Earth-to-Moon missions are considered. The first mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a periodic orbit around the Moon. The second mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a capture (non-periodic) orbit around the Moon. In both cases three velocity impulses are needed to perform the transfer: the first at an unknown initial point along the low Earth orbit, the second at injection on the stable manifold, the third at injection in the final (periodic or capture) orbit. The final goal is in finding the optimization parameters, which are represented by the locations, directions, and magnitudes of the velocity impulses such that the overall delta-v of the transfer is minimized. This work proves how isomorphic mapping (in two distinct forms) can be profitably employed to optimize such transfers, by determining in a geometrical fashion the desired optimization parameters that minimize the delta-v budget required to perform the transfer.  相似文献   

7.
The questions on the orbit selection for studying various areas of the Earth magnetosphere are discussed. The method of the orbit selection is based on the use of orbital tori and on the construction of areas of orbit set intersection with model surfaces, forming specific areas in the near Earth space: bow shock (BSh), magnetopause (MP) neutral sheet in the magnetosphere tail, cusp etc. Intersections of the “Prognoz” 1–8 orbit set with model surfaces BSh and MP are shown.  相似文献   

8.
We consider the problem of injection of a spacecraft into the heliocentric Earth's orbit ahead and/or behind the Earth by 60° and 120° in heliographic longitude. The range of solar and astrophysical problems for which these orbits are necessary is reviewed. The variants of injection into heliocentric orbits work from a low around-Earth orbit with one turn-on of the engine in this orbit and one turn-on at the end of the injection trajectory. In this case, it turns out to be more profitable to put spacecraft into orbit for three or even four revolutions of the Earth about the Sun. The velocities necessary for the start from a low around-Earth orbit, the velocities at the final point of injection, and the fuel mass (relative to the spacecraft mass) necessary for injection are estimated. The problems for which injection to similar orbits is executed, using the low-thrust engine and with a combined regime of injection, are also considered.  相似文献   

9.
The relative equilibria of a two spacecraft tether formation connected by line-of-sight elastic forces moving in the context of a restricted two-body system and a circularly restricted three-body system are investigated. For a two spacecraft formation moving in a central gravitational field, a common assumption is that the center of the circular orbit is located at the primary mass and the center of mass of the formation orbits around the primary in a great-circle orbit. The relative equilibrium is called great-circle if the center of mass of the formation moves on the plane with the center of the gravitational field residing on it; otherwise, it is called a nongreat-circle orbit. Previous research shows that nongreat-circle equilibria in low Earth orbits exhibit a deflection of about a degree from the great-circle equilibria when spacecraft with unequal masses are separated by 350 km. This paper studies these equilibria (radial, along-track and orbit-normal in circular Earth orbit and Earth–Moon Libration points) for a range of inter-craft distances and semi-major axes of the formation center of mass. In the context of a two-spacecraft Coulomb formation with separation distances on the order of dozens of meters, this paper shows that the equilibria deflections are negligible (less than 10?6°) even for very heterogeneous mass distributions. Furthermore, the nongreat-circle equilibria conditions for a two spacecraft tether structure at the Lagrangian libration points are developed.  相似文献   

10.
王亚敏  乔栋  崔平远 《宇航学报》2012,33(12):1845-1851
从月球逃逸探测小行星的发射机会搜索因需考虑日、地、月引力的影响而使问题变得复杂。针对该多体系统的发射机会搜索问题,提出了一种分层渐近的搜索方法。该方法首先通过分析地月系质心与小行星的几何关系,搜索从地月系质心到小行星的发射机会,进而以地月运动为研究对象,推导出了从月球轨道切向逃逸机会的判别条件,并基于此判别条件及等高线图法对逃逸机会进行了搜索。同时,为提高所得发射机会在多体模型下的轨道修正收敛性,给出了基于月心逃逸轨道参数为终端约束的日-地与日-地-月动力学模型的轨道渐近修正方法。最后,以近地小行星(3908)Nyx和(190491)2000 FJ20为例,搜索其从月球逃逸的发射机会,仿真计算表明了该方法的有效性。  相似文献   

11.
Different variants of the space patrol system to be designed for discovering and cataloging space objects hazardous for the Earth have been investigated. The basic idea of this system is to create an optical barrier using the telescopes deployed in a heliocentric orbit. Difficulties (as well as ways of overcoming them) of this program are analyzed, associated with form and position of the orbit of a space object relative to the patrol spacecraft, determination of orbit parameters, and mutual motion of space objects and the telescopes on spacecraft. The barrier’s schemes with scanning vertical or horizontal belts are considered. Some examples of observational conditions are presented for space objects crossing the barrier region: angular positions, velocities, distances, and numbers of days during which they are observed in the barrier region. The barrier’s characteristics are given for telescopes deployed in the orbits of the Earth and Venus.  相似文献   

12.
Within observational constraints and analytic orbit determinations, potential NEO hazards and mitigations are characterized in terms of orbit displacements to establish (arbitrary) “safe” closest approach distances and corresponding energies that must be externally applied to achieve appropriate orbit displacements from the Earth. Required orbital velocity changes depend on projected closest Earth approach distances and time to (near) impact. Energy to achieve orbital displacement depends on NEO mass, required orbital velocity change, and the energy–momentum coupling coefficient. Errors in these parameters introduce uncertainties into hazard index and mitigation procedures. Hazard avoidance levels and mitigation indices for nine near-Earth asteroids, including 1997 XF11 and 1999 AN10, with non-zero Earth-impact probabilities are computed as examples of the proposed methodology, generating insight into the dilemma of predicting near impacts. This zeroth order approximation should not be construed as solving an orbital mechanics problem, nor establishing a particular set of criteria for mitigation action, but rather as a “survival index”.  相似文献   

13.
Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years in orbit. The paper reviews special features of long SS operation (without return to the Earth) onboard an orbiting station as well as the problems associated with SS repeated use by several crews. An analysis of measures to support solving of the problems of SS long stay and reliable operation onboard the orbiting station is made: selection of a corresponding SS type and separate elements design; selection of the materials; routine and preventive maintenance; development tests. The advantages of the space suit of a semi-rigid type for solving the above problems are shown. The paper includes a short analysis of space suits' operation onboard the Russian orbiting station MIR, and some restuts of inspection of the Orlan-DMA space suit returned to the Earth from orbit by STS-79 alter long operation in orbit. Recommendations on further improvement of the space suits for EVA operations in the International Space Station (ISS) are given.  相似文献   

14.
天基照相跟踪空间碎片批处理轨道确定研究   总被引:1,自引:0,他引:1  
随着国内外天基观测空间碎片研究的展开,文章提出了利用跟踪卫星的CCD(Charge
Coupled Device)相机对空间碎片进行轨道探测的方法,首先建立了CCD照相观测模型和基于 照相观测 的空间碎片批处理轨道确定模型。通过对CCD相机底片归算方法的分析可知,利用
CCD相机所获得的观测数据与跟踪卫星的姿态无关,且其精度只与测量和坐标转换计算的精 度有关,在测量和计算中可获得较高的精度。分别对分布密度较高的低轨道和地球同步 轨道区域的空间碎片进行了定轨分析。仿真结果表明,定轨时采用两个跟踪弧段的照相数据 定轨精度大大高于一个弧段照相数据的定轨精度;跟踪卫星距离空间碎片越近,定轨精度越 高;低轨道空间碎片的定轨精度高于地球同步轨道上的空间碎片定轨精度。
  相似文献   

15.
An electrostatically charged Earth satellite whose orbit is decaying due to the Earths oblateness is considered. Secular perturbations of the orbit are taken into account: they are caused by the second zonal harmonic of the geopotential. These perturbations represent deviations of the longitude of the ascending node and perigee argument, the orbit form being invariable and the orbit inclination to the equatorial plane being constant. The attitude rotary motion of the satellite under the action of perturbing moments of the gravitational and Lorentz forces is studied. The magnetic field of the Earth is taken in a quadrupole approximation. The evolution of the satellites rotary motion is investigated on the basis of new differential equations in s-parameters specially constructed for this purpose. Using the method of averaging, basic regularities of the secular evolution of rotary motion of a screened satellite are revealed. It is found that the rotary motion of a charged satellite essentially depends on the quadrupole component of the geomagnetic potential.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 111–125.Original Russian Text Copyright © 2005 by Tikhonov.  相似文献   

16.
The auroral kilometric radio emission (AKR) is the most powerful sporadic radio emission of the terrestrial magnetosphere. It was discovered in 1965 by Soviet scientists in the experiment onboard the Electron-2 satellite [1]. The AKR still continues to stay an object of a large interest and detailed study (see, for example, a review by Gurnett [2]). The mechanism of cyclotron maser instability proposed by Wu and Lee [3] is a commonly accepted mechanism of AKR generation. We have demonstrated the presence of powerful AKR simultaneously in both hemispheres of the Earth in the period from August 1995 to August 1997, including summer-winter periods, on particular examples of registration of this emission in [4] where the directivity and mechanism of the emission were studied. Since in that period AKR was observed in the vicinity of perigees of the satellite orbit in both hemispheres almost at every orbit (3.8 days), we have a possibility to trace in more detail the changes in the emission power from one orbit to another in 1996 during a deep minimum of solar activity.  相似文献   

17.
冻结轨道是一种稳定的轨道,地球、火星、月球的卫星因引力场的南北不对称,都存在冻结轨道.由于主星体引力场的不同,它们卫星的冻结轨道也有不同的特性.地球卫星的冻结执道的偏心率非常小,对卫星遥感非常有利,国内外已有相当多的近地遥感卫星采用这种轨道.月球卫星的冻结轨道偏心率随轨道倾角的不同有很大的变化,对月球卫星冻结轨道的研究...  相似文献   

18.
Hanada  Toshiya 《Space Debris》2000,2(4):233-247
We have conducted a series of low-velocity impact experiments to understand the dispersion properties of fragments newly created by low-velocity impacts possible in space, especially in geostationary Earth orbit. The test results are utilized to establish a mathematical prediction model to be used in debris generation and propagation codes. Since the expected collision velocity between catalogued objects in geostationary Earth orbit shows a peak at a few hundreds meters per second, these impact experiments were conducted at a velocity range lower than 300m/s. As a typical structure of satellites in geostationary Earth orbit, thin aluminum honeycomb sandwich panels with carbon fiber reinforced plastics face sheets were prepared, while the projectile was a stainless steel ball of 9mm diameter. The data collected through these impact experiments have been re-analyzed based on the method used in the National Aeronautics and Space Administration (NASA) standard breakup model 1998 revision. The results indicate that the NASA standard breakup model derived from hypervelocity impacts could be applied to low-velocity collision possible in geostationary Earth orbit with some modifications.  相似文献   

19.
张宇  孔静  陈明  欧阳琦  段建锋 《宇航学报》2019,40(9):1014-1023
针对嫦娥5T服务舱(CE5T)拓展试验中的绕地大椭圆轨道,分析了轨道动力学演化趋势,通过测轨数据类型组合策略分析了统一S频段测量(USB)和甚长基线干涉测量(VLBI)在定轨中的贡献,得到了百米级的精密定轨精度;针对地月第二平动点(L2)绕飞轨道,分析了地心和月心积分的轨道动力学差异,制定了精密定轨的参数求解策略,得到了百米级的精密定轨精度;针对月球交会对接轨道的特点,选取三种不同的重力场模型定轨,比较了三者在轨道预报和数据拟合的差异,并与嫦娥3号(CE3)环月轨道的定轨精度进行比对,验证了不同重力场的适用范围,从计算精度和效率两方面制定了优化的定轨策略。  相似文献   

20.
A Space Debris Impact Risk Analysis Tool (SDIRAT) was developed and implemented to assess the orbital debris impact risk on a specified target in Earth orbit, in terms of flux, relative velocity, impact velocity, direction of the incoming particles, debris mass and diameter. Based on a deterministic approach, SDIRAT uses a realistic orbital debris population where each representative particle is identified by its rectangular coordinates (position and velocity) at a reference epoch. Using this information, some geometrical algorithms were developed and implemented to evaluate the contribution of each particle to the incoming flux. The position of the particle with respect to a specified target drives the selection criteria to reject, or select, it as a possible projectile. On the other hand, the relative velocity vector can be used to estimate the impact direction of the incoming flux. SDIRAT was conceived as a general tool for a variety of scenarios, such as low circular and elliptical orbits, up to the geosynchronous ring. This paper presents some examples of possible applications, including the computation of the incoming debris flux on SAX (low Earth orbit), SIRIO (geosynchronous orbit) and the IRIS upper stage (elliptical orbit). Other applications assess the impact risk for the Soviet Radar Ocean Reconnaissance Satellites Cosmos 1900 and Cosmos 1932.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号