首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present an observational study of magnetospheric and ionospheric disturbances during the December 2006 intense magnetic storm associated with the 4В/Х3.4 class solar flare. To perform the study we utilize the ground data from North–East Asian ionospheric and magnetic observatories (60–72°N, 88–152°E) and in situ measurements from LANL, GOES, Geotail and ACE satellites. The comparative analysis of ionospheric, magnetospheric and heliospheric disturbances shows that the interaction of the magnetosphere with heavily compressed solar wind and interplanetary magnetic field caused the initial phase of the magnetic storm. It was accompanied by the intense sporadic E and F2 layers and the total black-out in the nocturnal subauroral ionosphere. During the storm main phase, LANL-97A, LANL 1994_084, LANL 1989-046 and GOES_11 satellites registered a compression of the dayside magnetosphere up to their orbits. In the morning–noon sector the compression was accompanied by an absence of reflections from ionosphere over subauroral ionospheric station Zhigansk (66.8°N, 123.3°E), and a drastic decrease in the F2 layer critical frequency (foF2) up to 54% of the quite one over subauroral Yakutsk station (62°N, 129.7°E). At the end of the main phase, these stations registered a sharp foF2 increase in the afternoon sector. At Yakutsk the peak foF2 was 1.9 time higher than the undisturbed one. The mentioned ionospheric disturbances occurred simultaneously with changes in the temperature, density and temperature anisotropy of particles at geosynchronous orbit, registered by the LANL-97A satellite nearby the meridian of ionospheric and magnetic measurements. The whole complex of disturbances may be caused by radial displacement of the main magnetospheric domains (magnetopause, cusp/cleft, plasma sheet) with respect to the observation points, caused by changes in the solar wind dynamic pressure, the field of magnetospheric convection, and rotation of the Earth.  相似文献   

2.
The study of planetary magnetospheres allows us to understand processes occurring in the Earth’s magnetosphere by showing us how these processes respond under different conditions. We illustrate lessons learned about the control of the size of the magnetosphere by the dynamic pressure of the solar wind; how cold plasma is lost from magnetospheres; how free energy is generated to produce ion cyclotron waves; the role of fast neutrals in a planetary magnetosphere; the interchange instability; and reconnection in a magnetodisk. Not all information flow is from Jupiter and Saturn to Earth; some flows the other way.  相似文献   

3.
We review laboratory data and models on sputter-induced erosion and chemical alterations of ice films and apply the results to icy grains and satellites exposed to magnetospheric ion bombardment. We show that the source of the plasma in the inner magnetosphere of Saturn is likely to be the sputter erosion of the icy objects in this region and consider the sputter erosion and possible stabilization of the E-ring. Ion-induced polymerization is discussed as a source of the darkened rings of Uranus.  相似文献   

4.
In the present work we assess the stable and transient antiparticle content of planetary magnetospheres, and subsequently we consider their capture and application to high delta-v space propulsion. We estimate the total antiparticle mass contained within the Earth’s magnetosphere to assess the expediency of such usage. Using Earth’s magnetic field region as an example, we have considered the various source mechanisms that are applicable to a planetary magnetosphere, the confinement duration versus transport processes, and the antiparticle loss mechanisms. We have estimated the content of the trapped population of antiparticles magnetically confined following production in the exosphere due to nuclear interactions between high energy cosmic rays (CR) and constituents of the residual planetary upper atmosphere.The galactic antiprotons that directly penetrate into the Earth’s magnetosphere are themselves secondary by its nature, i.e. produced in nuclear reactions of the cosmic rays passing through the interstellar matter. These antiproton fluxes are modified, dependent on energy, when penetrating into the heliosphere and subsequently into planetary magnetospheres. During its lifetime in the Galaxy, CR pass through the small grammage of the interstellar matter where they produce secondary antiprotons. In contrast to this, antiprotons generated by the same CR in magnetosphere are locally produced at a path length of several tens g/cm2 of matter in the ambient planetary upper atmosphere. Due to the latter process, the resulting magnetically confined fluxes significantly exceed the fluxes of the galactic antiprotons in the Earth’s vicinity by up to two orders of magnitude at some energies.The radiation belt antiparticles can possibly be extracted with an electromagnetic-based “scoop” device. The antiparticles could be concentrated by and then stored within the superimposed magnetic field structure of such a device. In future developments, it is anticipated that the energy of the captured antiparticles (both rest energy and kinetic energy) can be adapted for use as a fuel for propelling spacecraft to high velocities for remote solar system missions.  相似文献   

5.
The Mariner 10 observations of Mercury's miniature magnetosphere collected during its close encounters in 1974 and 1975 are reviewed. Subsequent data analysis, re-interpretation and theoretical modeling, often influenced by new results obtained regarding the Earth's magnetosphere, have greatly expanded our impressions of the structure and dynamics of this small magnetosphere. Of special interest are the Earth-based telescopic images of this planet's tenuous atmosphere that show great variability on time scales of tens of hours to days. Our understanding of the implied close linkage between the sputtering of neutrals into the atmosphere due to solar wind and magnetospheric ions impacting the regolith and the resultant mass loading of the magnetosphere by heavy planetary ions is quite limited due to the dearth of experimental data. However, the influence of heavy ions of planetary origin (O+, Na+, K+, Ca+ and others as yet undetected) on such basic magnetospheric processes as wave propagation, convection, and reconnection remain to be discovered by future missions. The electrodynamic aspects of the coupling between the solar wind, magnetosphere and planet are also very poorly known due to the limited nature of the measurements returned by Mariner 10 and our lack of experience with a magnetosphere that is rooted in a regolith as opposed to an ionosphere. The review concludes with a brief summary of major unsolved questions concerning this very small, yet potentially complex magnetosphere.  相似文献   

6.
We have examined the region of occurrence of flux transfer events for three distinct orientations of the interplanetary magnetic field: nearly horizontal in the solar magnetospheric equator, diagonally southward at 45° to the magnetospheric equator and nearly due south. For horizontal IMF conditions the FTE's occur in a horizontal band about ± 6 RE wide. For diagonally southward IMF conditions, the FTE's occur in a diagonal swath about ± 6 RE wide passing through the subsolar point. For duskward but nearly due southward IMF conditions, our observations reveal FTE's throughout the northern morning quadrant. These observations are consistent with a near equatorial source for flux transfer events and hence with component merging and not anti-parallel merging. These observations also help understand the energetic ion anisotropies seen in these events.  相似文献   

7.
A better understanding of cometary dust optical properties has been derived from extensive observations of comet Halley, complemented by other cometary observations at large phase angles and/or in the infrared. Also, further analysis of IRAS observations and improvements in inversion techniques for zodiacal light have led to some progress in our knowledge of interplanetary dust.

Synthetic curves for phase angle dependence of intensity and polarization are presented, together with typical albedo values. The results obtained for interplanetary dust are quite reminiscent of those found for comets. However, the heterogeneity of the interplanetary dust cloud is demonstrated by the radial dependence of its local polarization and albedo; these parameters are also found to vary with inclination of the dust grains' orbits with respect to the ecliptic. Such results suggest drastic alterations with temperature in the texture of cometary dust, and would favor an important asteroidal component in the zodiacal cloud.  相似文献   


8.
9.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   

10.
The variations in the horizontal and declination components of the geomagnetic field in response to the interplanetary shocks driven by fast halo coronal mass ejections, fast solar wind streams from the coronal hole regions and the dynamic pressure pulses associated with these events are studied. Close association between the field-aligned current density (j) and the fluctuations in the declination component (ΔDABG) at Alibag is found for intense storm conditions. Increase in the dawn-dusk interplanetary electric field (Ey) and ΔDABG are generally in phase. However, when the magnetospheric electric field is directed from dusk to dawn direction, a prominent scatter occurs between the two. It is suggested that low-latitude ground magnetic data may serve as a proxy for the interplanetary conditions in the solar wind.  相似文献   

11.
Planetary rings     
The individual ring systems are described with dust/magnetosphere interactions high-lighted somewhat. Jupiter's main ring is tenuous and enveloped by the magnetosphere; it principally contains micron-sized silicate grains. A vertically-extended, radially-localized “halo” of submicron particles lies inward of the main ring while a newly-discovered very faint ring lies outside it. The classical Saturnian system is composed of water ice chunks with sizes principally between cm and meters. Satellite resonances determine some ring structure but most is not understood. The faint exterior rings (E, G, F and one just identified between the A and F rings) are intimately associated with magnetospheric particles and contain mainly small grains, which are also prominent in the “spokes” located in the dense, middle portion of the B ring. Most of the nine narrow Uranian rings are slightly inclined and eccentric, and presumably lie within the putative Uranian magnetosphere. Particles are likely carbonaceous; sizes are thought to be larger than microns.  相似文献   

12.
Energetic ion composition measurements have now been performed from earth orbiting satellites for more than a decade. As early as 1972 we knew that energetic (keV) ions of terrestrial origin represented a non-negligible component of the storm time ring current. We have now assembled a significant body of knowledge concerning energetic ion composition throughout much of the earth's magnetosphere. We know that terrestrial ions are a common component of the hot equatorial magnetospheric plasma in the ring current and the plasma sheet out to ? 23 RE. During periods of enhanced geomagnetic activity this component may become dominant. There is also clear evidence that the terrestrial component (specifically O+) is strongly dependent on solar cycle. Terrestrial ion source, transport, and acceleration regions have been identified in the polar auroral region, over the polar caps, in the magnetospheric boundary layers, and within the magnetotail lobes and plasma sheet boundary layer. Combining our present knowledge of these various magnetospheric ion populations, it is concluded that the primary terrestrial ion circulation pattern associated with enhanced geomagnetic activity involves direct injection from the auroral ion acceleration region into the plasma sheet boundary layer and central plasma sheet. The observed terrestrial component of the magnetospheric boundary layer and magnetotail lobes are inadequate to provide the required influx. They may, however, contribute significantly to the maintenence of the plasma sheet terrestrial ion population, particularly during periods of reduced geomagnetic activity. It is further concluded, on the basis of the relative energy distributions of H+ and O+ in the plasma sheet, that O+ probably contributes significantly to the ring current population at energies inaccessible to present ion composition instrumentation (? 30 keV).  相似文献   

13.
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ −35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and −60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about −100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.  相似文献   

14.
The Moon is immersed in plasma environment. The most interesting challenge of the lunar plasma– field environment is that it is alternatively dominated by the extended but variable outer atmosphere of the Earth – the magnetosphere – and by the extended but highly variable solar atmosphere – the solar wind. Understanding the plasma environment and its interaction with the lunar surface will be beneficial to both manned and robotic surface exploration activities and to scientific investigations. Presented is a preliminary map of variations of lunar surface electric potential over the day side and night side using probe equations and a discussion on dust dynamics in this E-field structure using the data from Electron Reflectometer in Lunar Prospector spacecraft during 1998–1999. On the day side, potential is around 5 V and on the night side it reaches up to −82 V. On the night side region, only highly energetic electrons can overcome this large negative potential. The variation at electron temperature (Te) strongly reflects in the surface potential. The potential reaches to a value of −82 V for Te = 58 eV. Surface charging causes the electrostatic transport of charged dust grains. Dust grain size of 0.1 μm shows a levitation height of 4.92 m on lunar day side, 748 m on terminator region and 3.7 km on the night side. The radius of maximum sized grain to be lofted, Rmax, peaks at the terminator region (Rmax = 0.83 μm). At the transition region dust levitation is almost absent. This region is most suited for exploration activities as the region is free from hazards caused by lunar dust.  相似文献   

15.
The dust population at 1 AU is known for all sizes between μm and cm to an accuracy better than one order of magnitude. It was observed by Helios that the fine grained dust (μm to 100 μm) decreases with increasing sun distance ∞ r?1.3, at least between 0.3 and 1 AU /1/.Two Pioneer 1011 dust experiments observed the dust distribution beyond 1 AU in the 10 to 100 μm diameter size range for the first time directly with contradicting results. The penetration experiment saw a constant flux out to 20 AU while the optical experiment observed a decrease of the dust number densities until 3.3 AU, but no scattered light was recorded further out. An attempt is made to explain these observations on the basis of the socalled ‘Greenberg’-particles: cometary core/mantle grains with organic mantle material. The observed enhancement of the dust flux by 1 or 2 orders of magnitudes near Jupiter and Saturn are interpreted as being caused by gravitational focussing, ejecta from jovian/saturnian satellites and electrostatic fragmentation products.  相似文献   

16.
The annual behaviour of monthly number of hours spent by the Earth in domains of either positive or negative By component of the interplanetary magnetic field (IMF) was studied. We used the hourly OMNI data in the cases of Kp > 3. The study was confined to the ascending phases of the four recent sunspot cycles when Interplanetary Coronal Mass Ejections (ICMEs) dominate among the sources of geoeffectiveness. Definite differences were found between the annual variations of the hourly sums. When the solar dipole is opposite to the terrestrial one, the sums exhibit the the combined effect of Rosenberg–Coleman and Russell–McPherron effects. Thus, in the geomagnetically active hours the negative By dominates during the first half of the year and the positive By dominates during the second half of the year. However, these effects can not be detected in the occurrence of the negative and positive GSM By values when the solar and terrestrial dipoles are parallel. In this case one can see polarity-independent semiannual variations instead of the polarity-dependent opposite annual variations. It is well-known that the By component modulates the energy transfer from the solar wind to the magnetosphere causing marked asymmetries in magnetospheric convective flow patterns at high latitudes. Our results hint that the occurrences of these asymmetries related to the ICMEs depend on the solar dipole cycle. In the antiparallel years one of them dominates during half a year causing asymmetric energy transfer to the magnetosphere. In the parallel years the occurrences of the two kind of asymmetries are equal on monthly time scale, thus the energy transfer is symmetric within a monthly and yearly time interval.  相似文献   

17.
Cometary comae, cometary tails, and the interplanetary dust cloud, are low density dust clouds built of cosmic dust particles. Light scattering observations, from in-situ space probes and remote observatories, are a key to their physical properties. This presentation updates results on cometary and interplanetary dust derived from such observations (with emphasis on polarization), and compares them with results on asteroidal regoliths. The polarization phase curves follow similar trends, with parameters that may vary from one object to another. The wavelength dependence is highly variable, although it is usually linear in the visible domain. It may be suggested (from observations, modeling and laboratory measurements) that these dust particles are irregular, with a size greater than the wavelength, and that cometary dust is highly porous, as compared to asteroidal or interplanetary dust. Sophisticated numerical models and laboratory measurements on dust analogues are indeed required to interpret without any ambiguity the ensemble of results. The opportunity offered by the ICAPS facility (an ESA project selected for the ISS, now in phase B) to deduce the physical properties of cosmic dust particles from their optical properties, as well as their evolution (breaking-off and agglomeration, ices condensation and evaporation), is presented.  相似文献   

18.
Based on the available measurement data, simulations of radiation conditions during spacecraft flights in the interplanetary space and in the Earth's and Jupiter's radiation belts has been carried out. The > or = 10 MeV and > or = 30 MeV solar flare proton fluence forecast has been proposed for Cycle 22. Radiation conditions due to both magnetospheric electrons and protons and to solar flare protons, magnetic rigidity cutoff being taken into account, have been evaluated on spacecraft trajectories in the Earth's and Jupiter's magnetospheres.  相似文献   

19.
The study of the dynamics and thermodynamics of the earth's upper atmosphere has made significant progress over the past few years owing to the availability of new global-scale data sets from the Dynamics Explorer satellites. The thermospheric wind and temperature fields at high latitude have been observed to depend strongly on forcing processes of magnetospheric origin. A key momentum source is due to the drag effect of ions convecting in response to electric fields mapped down on the ionosphere from magnetospheric boundary regions. Likewise, an important heat source derives from Joule or frictional dissipation due to ion/neutral difference velocities governed, in turn, by magnetospheric forcing. In this paper we discuss the progress made over the last 2–3 years initiated by the new satellite measurements and we review published data on ion and neutral motions in the context of the energy and momentum coupling between the magnetosphere and the ionosphere/neutral upper atmosphere. The observations indicate the existence of a “flywheel effect” which implies direct feedback from the neutral thermosphere to the magnetosphere via the release of energy and momentum previously “stored” in the neutral thermosphere.  相似文献   

20.
This paper is devoted to the study of propagation of disturbances caused by interplanetary shocks (IPS) through the Earth’s magnetosphere. Using simultaneous observations of various fast forward shocks by different satellites in the solar wind, magnetosheath and magnetosphere from 1995 till 2002, we traced the interplanetary shocks into the Earth’s magnetosphere, we calculated the velocity of their propagation into the Earth’s magnetosphere and analyzed fronts of the disturbances. From the onset of disturbances at different satellites in the magnetosphere we obtained speed values ranging from 500 to 1300 km/s in the direction along the IP shock normal, that is in a general agreement with results of previous numerical MHD simulations. The paper discusses in detail a sequence of two events on November 9th, 2002. For the two cases we estimated the propagation speed of the IP shock caused disturbance between the dayside and nightside magnetosphere to be 590 km/s and 714–741 km/s, respectively. We partially attributed this increase to higher Alfven speed in the outer magnetosphere due to the compression of the magnetosphere as a consequence of the first event, and partially to the faster and stronger driving interplanetary shock. High-time resolution GOES magnetic field data revealed a complex structure of the compressional wave fronts at the dayside geosynchronous orbit during these events, with initial very steep parts (10 s). We discuss a few possible mechanisms of such steep front formation in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号