首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Lario  D.  Haggerty  D.K.  Roelof  E.C.  Tappin  S.J.  Forsyth  R.J.  Gosling  J.T. 《Space Science Reviews》2001,97(1-4):277-280
On day 49 of 1999 a strong interplanetary shock was observed by the ACE spacecraft located at 1 AU from the Sun. This shock was followed 10 hours later by a magnetic cloud (MC). A large solar energetic particle (SEP) event was observed in association with the arrival of the shock and the MC at ACE. The Ulysses spacecraft, located at 22° S heliolatitude and nearly the same ecliptic longitude as ACE, observed a large SEP event beginning on day 54 that peaked with the arrival of a solar wind and magnetic field disturbance on day 61. A magnetic cloud was observed by Ulysses on days 63–64. We suggest a scenario in which both spacecraft intercepted the same MC, although sampling different regions of it. We describe the effects that the MC produced on the streaming of energetic particles at both spacecraft. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The Visible Imaging System (VIS) is a set of three low-light-level cameras to be flown on the POLAR spacecraft of the Global Geospace Science (GGS) program which is an element of the International Solar-Terrestrial Physics (ISTP) campaign. Two of these cameras share primary and some secondary optics and are designed to provide images of the nighttime auroral oval at visible wavelengths. A third camera is used to monitor the directions of the fields-of-view of these sensitive auroral cameras with respect to sunlit Earth. The auroral emissions of interest include those from N 2 + at 391.4 nm, Oi at 557.7 and 630.0 nm, Hi at 656.3 nm, and Oii at 732.0 nm. The two auroral cameras have different spatial resolutions. These resolutions are about 10 and 20 km from a spacecraft altitude of 8R e . The time to acquire and telemeter a 256×256-pixel image is about 12 s. The primary scientific objectives of this imaging instrumentation, together with thein-situ observations from the ensemble of ISTP spacecraft, are (1) quantitative assessment of the dissipation of magnetospheric energy into the auroral ionosphere, (2) an instantaneous reference system for thein-situ measurements, (3) development of a substantial model for energy flow within the magnetosphere, (4) investigation of the topology of the magnetosphere, and (5) delineation of the responses of the magnetosphere to substorms and variable solar wind conditions.  相似文献   

3.
In this paper we present an initial survey of results from the plasma wave experiments on the ISEE-1 and -2 spacecraft which are in nearly identical orbits passing through the Earth's magnetosphere at radial distances out to about 22.5R e . Essentially every crossing of the Earth's bow shock can be associated with an intense burst of electrostatic and whistler-mode turbulence at the shock, with substantial wave intensities in both the upstream and downstream regions. Usually the electric and magnetic field spectrum at the shock are quite similar for both spacecraft, although small differences in the detailed structure are sometimes apparent upstream and downstream of the shock, probably due to changes in the motion of the shock or propagation effects. Upstream of the shock emissions are often observed at both the fundamental, f - p , and second harmonic, 2f p - , of the electron plasma frequency. In the magnetosphere high resolution spectrograms of the electric field show an extremely complex distribution of plasma and radio emissions, with numerous resonance and cutoff effects. Electron density profiles can be obtained from emissions near the local electron plasma frequency. Comparisons of high resolution spectrograms of whistler-mode emissions such as chorus detected by the two spacecraft usually show a good overall similarity but marked differences in detailed structure on time scales less than one minute. Other types of locally generated waves, such as the (n+1/2)f - g electron cyclotron waves, show a better correspondence between the two spacecraft. High resolution spectrograms of kilometric radio emissions are also presented which show an extremely complex frequency-time structure with many closely spaced narrow-band emissions.  相似文献   

4.
We conclude the heliospheric image series with this third and final instalment, where we consider the physical implications of our reconstruction of interplanetary coronal mass ejections from heliospheric imagers. In Paper 1 a review of the theoretical framework for the appearance of ICMEs in the heliosphere was presented and in Paper 2 a model was developed that extracted the three-dimensional structure and kinematics of interplanetary coronal mass ejections directly from SMEI images. Here we extend the model to include STEREO Heliospheric Imager data and reproduce the three-dimensional structure and kinematic evolution of a single Earth-directed interplanetary coronal mass ejection that was observed in November 2007. These measurements were made with each spacecraft independently using leading edge measurements obtained from each instrument. We found that when data from the three instruments was treated as a single collective, we were able to reproduce an estimate of the ICME structure and trajectory. There were some disparities between the modelled ICME and the in situ data, and we interpret this as a combination of a slightly more than spherically curved ICME structure and a corotating interaction region brought about by the creation of a coronal hole from the CME eruption. This is the first time evidence for such a structure has been presented and we believe that it is likely that many ICMEs are of this nature.  相似文献   

5.
We present a review on the interplanetary causes of intense geomagnetic storms (Dst≤−100 nT), that occurred during solar cycle 23 (1997–2005). It was reported that the most common interplanetary structures leading to the development of intense storms were: magnetic clouds, sheath fields, sheath fields followed by a magnetic cloud and corotating interaction regions at the leading fronts of high speed streams. However, the relative importance of each of those driving structures has been shown to vary with the solar cycle phase. Superintense storms (Dst≤−250 nT) have been also studied in more detail for solar cycle 23, confirming initial studies done about their main interplanetary causes. The storms are associated with magnetic clouds and sheath fields following interplanetary shocks, although they frequently involve consecutive and complex ICME structures. Concerning extreme storms (Dst≤−400 nT), due to the poor statistics of their occurrence during the space era, only some indications about their main interplanetary causes are known. For the most extreme events, we review the Carrington event and also discuss the distribution of historical and space era extreme events in the context of the sunspot and Gleissberg solar activity cycles, highlighting a discussion about the eventual occurrence of more Carrington-type storms.  相似文献   

6.
Pioneer 7 and Pioneer 8 spacecraft provided the only direct observations of the geomagnetic tail at geocentric distances as large as 1000R e and 500R e respectively. The presence of a low density plasma flow in the region of expected tail and the intermittent and short duration character of the tail encounters suggested in the past a distant tail structure remarkably different from its near-earth and cislunar shape. However the recent discovery of the plasma mantle allows to interpret the Pioneer observations in terms of a distant tail that possibly is still preserving most of its near-earth characteristics. In particular, the region of tail encounters and the magnitude and direction of the observed magnetic field might be consistent with a cylindrical tail with a modestly increased cross-section. Neutral sheet observations also appear to be consistent with the most recent bidimensional tail models. Finally, as in the cislunar region, the double peaked proton energy spectra can be interpreted in terms of a partial intermingling of plasma sheet and plasma mantle populations.Also at Laboratorio Plasma nello Spazio, CNR, Frascati.  相似文献   

7.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   

8.
The intense solar activity centered in March and June 1991 produced some of the largest interplanetary disturbances over the past several solar cycles. For these events the Ulysses EPAC energetic particle observations near 3 AU are compared with those of the Voyager 2 CRS experiment near 35 AU. At Voyager 2 there is a single long-lived event extending over a period of some 6 months while the Ulysses data shows the imprint of individual events as well as the formative stages of the longer lived structure. The average intensity gradient is –17% AU between the 2 spacecraft. At both locations the energy spectra can be represented by an exponential in momentum. The characteristic momentum for protons, (Po)H is on the average 4–5 times larger at 35 AU than at 3 AU and there is a significant change in the (Po)He/(Po)H ratio. However the average H to He ratio is in the range 20–25 for both sets of measurements.  相似文献   

9.
The ionic charge of solar energetic particles (SEP) as observed in interplanetary space is an important parameter for the diagnostic of the plasma conditions at the source region and provides fundamental information about the acceleration and propagation processes at the Sun and in interplanetary space. In this paper we review the new measurements of ionic charge states with advanced instrumentation onboard the SAMPEX, SOHO, and ACE spacecraft that provide for the first time ionic charge measurements over the wide energy range of ∼0.01 to 70 MeV/nuc (for Fe), and for many individual SEP events. These new measurements show a strong energy dependence of the mean ionic charge of heavy ions, most pronounced for iron, indicating that the previous interpretation of the mean ionic charge being solely related to the ambient plasma temperature was too simplistic. This energy dependence, in combination with models on acceleration, charge stripping, and solar and interplanetary propagation, provides constraints for the temperature, density, and acceleration time scales in the acceleration region. The comparison of the measurements with model calculations shows that for impulsive events with a large increase of Q Fe(E) at energies ≤1 MeV/nuc the acceleration occurs low in the corona, typically at altitudes ≤0.2 R S .  相似文献   

10.
The Neutral Particle Detector (NPD) of the ASPERA-3 experiment (Analyser of Space Plasmas and Energetic Atoms) on board the Mars Express (MEX) spacecraft observed an intense flux of H ENAs (energetic neutral atoms) with average energy of about 1.5 keV emitted anisotropically from the subsolar region of Mars. The NPD detected the ENA jet near the bow shock at radial distances of about 1 R M from the Martian surface as the spacecraft moved outbound, while the NPD continuously pointed towards the subsolar region. The jet intensity shows oscillative behavior. These intensity variations occur on two clearly distinguishable time scales. The majority of the identified events have an average oscillation period of about 50 sec. The second group consists of events with long-scale variations with a time scale of approximately 300 sec. The fast oscillations of the first group exhibit a periodic structure and are detected in every orbit, while the slow variations of the second group are identified in ∼40% of orbits. The intensity of the fast oscillations have a peak-to-valley ratio about 20 to 30% of the peak intensity. One of the possible mechanisms to explain fast oscillations is the formation of the low frequency ion waves at the subsolar region of Mars. Slow variations may be explained by either temporal variations in the ENA generation source or by a specific structure of the ENA generation source, in which hair-like ENA subjets can be present.  相似文献   

11.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

12.
he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.  相似文献   

13.
For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz, Two major events have been observed, the first in 1983–84 and the second in 1992–93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May–June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f p ) and at twice the plasma frequency (2f p ). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.Abbreviations PWS Plasma Wave Subsystem - AU Astronomical Unit - DSN Deep Space Network - NASA National Aeronautics and Space Administration - GMIR Global Merged Interaction Region - MHD Magnetohydrodynamic - CME coronal mass ejection - f p plasma frequency - R radial distance - AGC automatic gain control  相似文献   

14.
It is a crucial issue to know where magnetic reconnection takes place in the near-Earth magnetotail for substorm onsets. It is found on the basis of Geotail observations that the factor that controls the magnetic reconnection site in the magnetotail is the solar wind energy input. Magnetic reconnection forms close to (far from) the Earth in the magnetotail for high (low) solar wind energy input conditions.With the early Vela spacecraft observations, it was believed that magnetic reconnection started inside the Vela position, likely at 15 RE. The later ISEE/IRM observations put magnetic reconnection beyond 20 RE. The Vela event studies were made for highly active conditions, while the ISEE/IRM survey studies were made for moderate or quiet conditions. The finding of the factor that controls the site of magnetic reconnection in the magnetotail resolves the apparent discrepancy among various spacecraft results, and suggests solar cycle variation of the magnetotail reconnection site.  相似文献   

15.
This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identi- ties about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a space- craft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov's method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.  相似文献   

16.
With the recent advancements in interplanetary coronal mass ejection (ICME) imaging it is necessary to understand how heliospheric images may be interpreted, particularly at large elongation angles. Of crucial importance is how the current methods used for coronal mass ejection measurement in coronagraph images must be changed to account for the large elongations involved in the heliosphere. We present results comparing a new model of interplanetary disturbances with heliospheric image data, from the Solar Mass Ejection Imager. A database containing a range of ICMEs simulated with varying parameters describing its topology, orientation, location and speed was produced and compared with two ICMEs observed in February and December 2004. We identify the simulated ICME that best matches the data, and use the parameters required to identify their three-dimensional leading-edge structure, orientation and kinematics. By constant comparison with the data we are able to keep track of small changes to the ICME topology and kinematic properties, thus for the first time are able to monitor how the dynamic interaction between the ICME and the interplanetary medium affects ICME evolution. This is the second part of a series of three papers, where the theory behind the model is presented in an accompanying paper and the physical implications are discussed in the third part. The first part considers the effects of Thomson scattering across the entire span of the disturbance and includes its apparent geometry at large elongations. We find that the model converges reliably to a solution for both events, although we identify four separate structures during the December period. Comparing the 3-D trajectory and source location with known associated features identified with other spacecraft, we find a remarkable agreement between the model and data. We conclude with a brief discussion of the physical implications of the model.  相似文献   

17.
Lin  Naiguo  Kellogg  P.J.  MacDowall  R.J.  Gary  S.P. 《Space Science Reviews》2001,97(1-4):193-196
Observations of ion acoustic waves in the solar wind during the first and second orbit of the Ulysses spacecraft are presented. The observations show variations of the wave activity with the heliolatitude and with the phase of the solar cycle. The interrelationships between the wave intensity and the electron heat flux and the ratio of electron to proton temperature, T e/T p, are examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20–70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a P =(8.74±1.33)×10?10 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts’ trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41×10?10 m/s2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.  相似文献   

19.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   

20.
The Earth's magnetopause is the boundary between a hot tenuous plasma in the magnetosphere and a cooler denser plasma in the magnetosheath. Both of these plasmas contain magnetic fields whose directions are usually different but whose magnitudes are often comparable. Efforts to understand the structure of the magnetosphere have been hampered by the variability and complexity of this boundary. Waves on the magnetopause surface propagate toward the magnetotail and produce the multiple boundary crossings frequently seen by spacecraft. Boundary velocities are poorly known and range anywhere within an order of magnitude of 10 km s–1. Typical thicknesses are probably on the order of a few hundred km which is a few times the gyroradius of a thermal proton. Although conclusive direct evidence for a field component, B n , across the magnetopause has not been found, this lack of evidence may reflect the difficulty in determining B n in the presence of magnetopause waves rather than the real absence of this component. Considerable indirect evidence exists for an open magnetosphere, but the importance of the reconnection process thought to produce open field lines has recently been questioned.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号