首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
为能够在高纬区域获取高精度电离层参数特性结果,提出了基于地磁坐标的高纬度区域电离层F2层临界频率(f0F2)的重构方法.该方法确定了基于地磁坐标的变异函数,通过求解改进Kriging方程得出估计值.方法的确定取决于对2种坐标系、2类电离层距离计算方法以及尺度因子的选取.通过对俄罗斯6个垂直探测站在太阳活动高年(2013年)和低年(2017年)的f0F2历史观测数据使用月中值进行交叉验证,证明了引入地磁坐标和利用球面距离计算方法对高纬度地区进行重构能够达到最优效果.相比现有方法,其整体标准误差和绝对误差均有所降低.上述研究证实了该方法的有效性,对电子信息系统的可用频率预测以及通信效能保障具有重要意义.   相似文献   

2.
用高阶精度的紧致差分方法,对低速的随时间发展的二维可压缩H-2/O-2混合层流动编制了直接数值模拟的计算机程序,对雷诺数Re为400、来流马赫数Ma分别为0.4(上部的H2)和1.57(下部的O2)的H2/O2亚跨超声速混合层流动进行了计算,得到了相应的计算结果,并对结果进行了分析和研究.  相似文献   

3.
With the continuous deployment of Low Earth Orbit (LEO) satellites, the estimation of differential code biases (DCBs) based on GNSS observations from LEO has gained increasing attention. Previous studies on LEO-based DCB estimation are usually using the spherical symmetry ionosphere assumption (SSIA), in which a uniform electron density is assumed in a thick shell. In this study, we propose an approach (named the SHLEO method) to simultaneously estimate the satellite and LEO onboard receiver DCBs by modeling the distribution of the global plasmaspheric total electron content (PTEC) above the satellite orbit with a spherical harmonic (SH) function. Compared to the commonly used SSIA method, the SHLEO model improves the GPS satellite DCB estimation accuracy by 13.46% and the stability by 22.34%, respectively. Compared to the GPS satellite DCBs estimated based on the Jason-3-only observations, the accuracy and monthly stability of the satellite DCBs can be improved by 14.42% and 26.8% when both Jason-2 and Jason-3 onboard observations are jointly processed. Compared with the Jason-2 solutions, the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations have an improved consistency of better than 18.26% and 9.71% with the products provided by the Center for Orbit Determination in Europe (CODE) and Chinese Academy of Sciences (CAS). Taking the DCB products provided by the German Aerospace Center (DLR) as references, there is no improvement in accuracy of the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations than the Jason-2 solutions alone. A periodic variation is found in the time series of both the Jason-3 and Jason-2 onboard receiver DCB estimates. Preliminary analysis of the PTEC distribution based on the estimated SH coefficients are also presented.  相似文献   

4.
World-ocean distribution of the crossover altimetry data from Geosat, TOPEX/Poseidon (T/P) and the ERS 1 missions have provided strong independent evidence that NASA's/CSR's JGM 2 geopotential model (70 × 70 in spherical harmonics) yields accurate radial ephemerides for these satellites. In testing the sea height crossover differences found from altimetry and JGM 2 orbits for these satellites, we have used the sea height differences themselves (of ascending minus descending passes averaged at each location over many exact repeat cycles) and the Lumped Latitude Coefficients (LLC) derived from them. For Geosat we find the geopotential-induced LLC errors (exclusive of non-gravitational and initial state discrepancies) mostly below 6 cm, for TOPEX the corresponding errors are usually below 2 cm, and for ERS 1 (35-day cycle) they are generally below 5 cm. In addition, we have found that these observations agree well overall with predictions of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected LLC errors for Geosat, T/P, and ERS 1 are usually between 1 and 4 cm, 1 – 2 cm, and 1 – 4 cm, respectively (they depend on the filtering of long-periodic perturbations and on the order of the LLC). This agreement is especially impressive for ERS 1 since no data of any kind from this mission was used in forming JGM 2.

The observed crossover differences for Geosat, T/P and ERS 1 are 8, 3, and 11 cm (rms), respectively. These observations also agree well with prediction of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected crossover errors for Geosat and T/P are 8 cm and 2.3 cm, respectively. The precision of our mean difference observations is about 3 cm for Geosat (approx. 24,000 observations), 1.5 cm for T/P (approx. 6,000 observations) and 5 cm for ERS 1 (approx. 44,000 observations). Thus, these “global” independent data should provide a valuable new source for improving geopotential models. Our results show the need for further correction of the low order JGM 2 geopotential as well as certain resonant orders for all 3 satellites.  相似文献   


5.
To ensure the compatibility and interoperability with modernized GPS, Galileo satellites are capable of broadcasting navigation signals on carrier phase frequencies that overlap with GPS, i.e., GPS/Galileo L1-E1/L5-E5a. Moreover, the GPS/Galileo L2-E5b signals have different frequencies with wavelength differences smaller than 4.2?mm. Such overlapping and narrowly spaced signals between GPS and Galileo bring the opportunity to use the tightly combined double-differenced (DD) model for precise real-time kinematic (RTK) positioning, resulting in improved performance of ambiguity resolution and positioning with respect to the classical standard or loosely combined DD model. In this paper, we focus on the model and performance assessment of tightly combined GPS/Galileo L1-E1/L2-E5b/L5-E5a RTK for short and long baselines. We first investigate the tightly combined GPS/Galileo DD observational model for both short and long baselines with simultaneously considering the GPS/Galileo overlapping and non-overlapping frequencies. Particularly, we introduce a reparameterization approach to solve the rank deficiency that caused by the correlation between the DISB parameters and the DD ionospheric parameters for both overlapping and non-overlapping frequencies. Then we present performance assessment for the tightly combined GPS/Galileo RTK model with real-time estimation of the differential inter-system bias (DISB) parameters for short and long baselines in terms of ratio value, ambiguity dilution of precision (ADOP), ambiguity conditional number, decorrelation number, search count, empirical success rate, time-to-first-fix (TTFF), and positioning accuracy. Results from both static and kinematic experiments demonstrated that compared to the loosely combined model, the tightly combined model can deliver improved performance of ambiguity resolution and precise positioning with different satellite visibility. For the car-driven short baseline experiment with 10° elevation cut-off angle, the tightly combined model can not only significantly increase the ratio value by approximately 27.5% (from 16.0 to 20.4), but also reduce the ambiguity ADOP, the conditional number, and the search count in LAMBDA by approximately 22.2% (from 0.027 to 0.021 cycles), 14.9% (from 199.2 to 169.6), and 25.4% (from 150.1 to 112.0), respectively. Comparable decorrelation number, empirical success rate, and positioning accuracy are also obtained. For the car-driven long baseline experiment, it is also observed that the ambiguity resolution performance in terms of the ratio value, the decorrelation number, the condition number, and the search count are significantly improved by approximately 18.5% (from 2.7 to 3.2), 22.0% (from 0.186 to 0.227), 55.9% (from 937.6 to 413.7), and 10.3% (from 43.8 to 39.3), respectively. Moreover, comparable ADOP, empirical success rate, and positioning accuracy are obtained as well. Additionally, the TTFF can be reduced (from 54.1 to 51.8 epochs with 10° elevation cut-off angle) as well from the results of static experiments.  相似文献   

6.
The Quasi-Zenith Satellite System (QZSS) established by the Japan Aerospace Exploration Agency mainly serves the Asia-Pacific region and its surrounding areas. Currently, four in-orbit satellites provide services. Most users of GNSS in the mass market use single-frequency (SF) receivers owing to the low cost. Therefore, it is meaningful to analyze and evaluate the contribution of the QZSS to SF precise point positioning (PPP) of GPS/BDS/GLONASS/Galileo systems with the emergence of GNSS and QZSS. This study compares the performances of three SF PPP models, namely the GRoup and PHase Ionospheric Correction (GRAPHIC) model, GRAPHIC with code observation model, and an ionosphere-constrained model, and evaluated the contribution of the QZSS to the SF PPP of GPS/BDS/GLONASS/Galileo systems. Moreover, the influence of code bias on the SF PPP of the BDS system is also analyzed. A two-week dataset (DOY 013–026, 2019) from 10 stations of the MGEX network is selected for validation, and the results show that: (1) For cut-off elevation angles of 15, 20, and 25°, the convergence times for the static SF PPP of GLONASS + QZSS are reduced by 4.3, 30.8, and 12.7%, respectively, and the positioning accuracy is similar compared with that of the GLONASS system. Compared with the BDS single system, the convergence times for the static SF PPP of BDS + QZSS under 15 and 25° are reduced by 37.6 and 39.2%, the horizontal positioning accuracies are improved by 18.6 and 14.1%, and the vertical components are improved by 13.9 and 21.4%, respectively. At cut-off elevation angles of 15, 20, and 25°, the positioning accuracy and precision of GPS/BDS/GLONASS/Galileo + QZSS is similar to that of GPS/BDS/GLONASS/Galileo. And the convergence times are reduced by 7.4 and 4.3% at cut-off elevation angles of 20 and 25°, respectively. In imitating dynamic PPP, the QZSS significantly improves the positioning accuracy of BDS and GLONASS. However, QZSS has little effect on the GPS-only, Galileo-only and GPS/BDS/GLONASS/Galileo. (2) The code bias of BDS IGSO and MEO cannot be ignored in SF PPP. In static SF PPP, taking the frequency band of B1I whose multipath combination is the largest among the frequency bands as an example, the vertical component has a systematic bias of approximately 0.4–1.0 m. After correcting the code bias, the positioning error in the vertical component is lower than 0.2 m, and the positioning accuracy in the horizontal component are improved accordingly. (3) The SF PPP model with ionosphere constraints has a better convergence speed, while the positioning accuracy of the three models is nearly equal. Therefore the GRAPHIC model can be used to get good positioning accuracy in the absence of external ionosphere products, but its convergence speed is slower.  相似文献   

7.
基于北斗卫星导航系统(BDS)和全球定位系统(GPS)实测电离层穿刺点(IPP)数据,结合国际参考电离层(IRI)经验模型历史数据,提出一种对区域二维电离层总电子含量(TEC)进行高精度建模的方法.针对缺乏穿刺点的区域内短时间电离层建模时精度较低且各时段穿刺点空间分布不同的问题,该方法使用IRI模型在建模区域内均匀添加虚拟穿刺点数据,并根据与实测穿刺点的距离,使用构造的权重计算公式赋予其动态权重值,通过加权最小二乘法进行球谐模型参数解算.与欧洲定轨中心(CODE)发布的全球电离层图(GIM)进行数据比对发现,相对于只使用BDS/GPS实测穿刺点数据的建模方法,利用本文建模方法计算获得的垂直总电子含量(VTEC)值对缺乏实测穿刺点的区域精度有明显的提升.   相似文献   

8.
The Global Navigation Satellite System (GNSS) receivers equipped on the Haiyang-2D (HY-2D) satellite is capable of tracking the signals of both the third generation of BeiDou satellite navigation System (BDS-3) and the Global Positioning System (GPS), which make it feasible to assess the performance of real-time orbit determination (RTOD) for the HY-2D using onboard GNSS observations. In this study, the achievable accuracy and convergence time of RTOD for the HY-2D using onboard BDS-3 and GPS observations are analyzed. Benefiting from the binary-offset-carrier (BOC) modulation, the BDS-3 C1X signal includes less noise than the GPS C1C signal, which has the same signal frequency and chipping rate. The root mean squares (RMS) of the noises of C1X and C1C code measurements are 0.579 m and 1.636 m, respectively. Thanks to a ten-times higher chipping rate, the code measurements of BDS-3 C5P, GPS C1W and C2W are less noisy. The RMS of code noises of BDS-3 C5P, GPS C1W, and C2W are 0.044 m, 0.386 m, and 0.272 m, respectively. For the HY-2D orbit, the three-dimensional (3D) and radial accuracies can reach 31.8 cm and 7.5 cm with only BDS-3 observations, around 50 % better than the corresponding accuracies with GPS. Better performance of the BDS-3 in RTOD for the HY-2D is attributed to the high quality of its broadcast ephemeris. When random parameters are used to absorb ephemeris errors, substantial improvement is seen in the accuracy of HY-2D orbit with either BDS-3 or GPS. The 3D RMS of HY-2D orbit errors with BDS-3 and GPS are enhanced to 23.1 cm and 33.6 cm, and the RMS of the radial components are improved to 6.1 cm and 13.3 cm, respectively. The convergence time is 41.6 and 75.5 min for the RTOD with BDS-3 and GPS, while it is reduced to 39.2 and 27.4 min after the broadcast ephemeris errors are absorbed by random parameters. Overall, the achievable accuracy of RTOD with BDS-3 reaches decimeter level, which is even better than that with GPS, making real-time navigation using onboard BDS-3 observations a feasible choice for future remote sensing missions.  相似文献   

9.
为了获取高速铁路列车在隧道这种导航卫星不可见环境下的定位信息,提出一种基于捷联惯性导航系统(SINS)和射频识别技术(RFID)的组合定位方法。通过响应时间模型来计算标签的定位精度,依据实际轨道环境增加标签对列车姿态校准的能力,同时结合惯性导航系统解算得到连续的定位数据。仿真结果表明:在30 km长的隧道利用射频识别标签位置信息进行校准,可以很大程度地减小惯性导航系统的误差积累,提高定位精度。引入姿态信息后,可以在陀螺仪性能与标签间隔的多种组合中保持隧道全线定位精度在米级,最高能够达到0.5 m。   相似文献   

10.
选取捷联惯导系统误差作为系统状态,利用捷联惯导系统(SINS)与电荷耦合器件(CCD)星敏感器各自的姿态矩阵输出构造量测,设计SINS/CCD组合导航算法;利用SINS与全球定位系统(GPS)各自的速度、位置输出构造量测,设计SINS/GPS组合导航算法。然后,利用联邦型卡尔曼滤波技术,将各子滤波器输出的系统状态局部最优估计值送入主滤波器,通过全局最优融合算法计算得到系统状态的全局最优估计值。仿真结果表明,基于SINS/CCD/GPS的组合导航系统具有很高的导航精度,达到了3.5m的定位精度和9″的航向精度,非常适用于飞行器的高精度导航定位。  相似文献   

11.
Precise point positioning (PPP) usually takes about 30?min to obtain centimetre-level accuracy, which greatly limits its application. To address the drawbacks of convergence speed and positioning accuracy, we develop a PPP model with integrated GPS and BDS observations. Based on the method, stations with global coverage are selected to estimate the fractional cycle bias (FCB) of GPS and BDS. The short-term and long-term time series of wide-lane (WL) FCB, and the single day change of narrow-lane (NL) FCB are analysed. It is found that the range of GPS and BDS non-GEO (IGSO and MEO) WL FCB is stable at up to a 30-day-time frame. At times frame of up to 60?days, the stability is reduced a lot. Whether for short-term or long-term, the changes in the BDS GEO WL FCB are large. Moreover, BDS FCB sometimes undergoes a sudden jump. Besides, 17 and 10 stations were used respectively to investigate the convergence speed and positioning errors with six strategies: BDS ambiguity-float PPP (Bfloat), GPS ambiguity-float PPP (Gfloat), BDS/GPS ambiguity-float PPP (BGfloat), BDS ambiguity-fixed PPP (Bfix), GPS ambiguity-fixed (Gfix), and BDS/GPS ambiguity-fixed (BGfix). The average convergence speed of the ambiguity-fixed solution is greatly improved compared with the ambiguity-float solution. In terms of the average convergence time, the Bfloat is the longest and the BGfix is the shortest among these six strategies. Whether for ambiguity-float PPP or ambiguity-fixed PPP, the convergence reduction time in three directions for the combined system is the largest compared with the single BDS. The average RMS value of the Bfix in three directions (easting (E), northing (N), and up (U)) are 2.0?cm, 1.5?cm, and 5.9?cm respectively, while those of the Gfix are 0.8?cm, 0.5?cm, and 1.7?cm. Compared with single system, the BDS/GPS combined ambiguity-fixed system (BGfix) has the fastest convergence speed and the highest accuracy, with average RMS as 0.7?cm, 0.5?cm, and 1.9?cm for the E, N, U components, respectively.  相似文献   

12.
在全球定位系统和惯性导航系统组成的超紧耦合系统中,卫星信号的跟踪性能直接取决于载波跟踪环路的带宽。为提高最优带宽的计算精度,在对惯导辅助下载波跟踪环路跟踪特性进行分析的基础上,详细推导了载波多普勒频率估计误差、多普勒频率变化率估计误差的计算方式,建立了惯导辅助下的环路跟踪误差模型;在实时估计跟踪载噪比的基础上,应用离散牛顿二阶梯度法迭代解算最优带宽,并进行实时调整。仿真结果表明,所设计最优带宽迭代解算方法的计算精度能够在11次迭代内达到99.6%,以此作为环路的带宽,能够在弱信号、辅助信息精度较低的情况下有效提高环路的跟踪精度。  相似文献   

13.
The differential code and phase biases induced by the receiver hardware (including receiver, antenna, firmware, etc.) of the Global Navigation Satellite System (GNSS) have significant effects on precise timing and ionosphere sensing, thus deserve careful treatment. In this contribution, we propose an approach to fast fix the single-difference ambiguity to finally obtain the unbiased estimates of between-receiver differential phase bias (BR-DPB) and between-receiver differential code-phase bias (BR-DCPB) based on the short baseline mode. The key to this method is that the error sources can be significantly eliminated due to the length of the baseline is very short. At the same time, the empirical constraints and random characteristics of BR-DPB/BR-DCPB were considered, which is conducive to the resolution of single-difference ambiguity. Several sets of GNSS data (GPS L1/L2, Galileo E1/E5b, and BDS B1/B3), recorded by the short baselines in an interval of 30 s and covered a broad range of receiver/antenna types (JAVA, SEPT, LEIC, and TRIM), were used to verify the effectiveness of the proposed method. The numerical tests show that the proposed method is capable of fast fixing the single-difference ambiguity successfully within a few epochs and then providing the unbiased estimates of BR-DPB and BR-DCPB in an epoch-by-epoch manner. Experiments show that the estimated BR-DPB is in millimeter accuracy, which is of great significance for the millimeter-accuracy phase time transfer and ionospheric delay estimation. Furthermore, the calibrated BR-DPB/BR-DCPB can be treated as the known products for long-distance precise timing and ionosphere sensing based on the inter-station single-difference model.  相似文献   

14.
Tight integration can enhance the model strength and positioning performance by considering the characteristic of differential inter-system bias (DISB), especially in obstructed environments. However, limited work emphasizes the comprehensive analysis of five-frequency DISBs between BDS-3 and other systems considering the receiver type, receiver configuration, and antenna type. In addition, the overlapping DISBs between BDS-3 and BDS-2 are also in great demand for further investigation since they are often regarded as one system. In this study, one DISB-float model is introduced to estimate the DISBs, and one DISB-fixed model and one DISB-free model are formulated to enhance the model strength of tight integration. Four dedicated datasets were collected to estimate the DISBs, which are also comprehensively analyzed considering the receiver type, receiver configuration, and antenna type. The results show that the DISBs between BDS-3 and other systems are rather stable over a certain period and are related to the receiver type and receiver configuration, whereas are not related to the antenna type. More interestingly, the B1I code DISB between BDS-3 and BDS-2 exhibits significant magnitude with a mean value of ?1.44 m for the baseline composed of two different receivers. In this case, the B1I code DISB must be considered and the tight integration between BDS-3 and BDS-2 considering its calibration can improve the positioning performance. Besides, the tight integration of the DISB-fixed model can significantly improve the positioning accuracy between multiple GNSS. Compared to the loose integration, the improvement of 60.6 %, 56.6 %, and 61.2 % can be obtained in the E, N, and U directions, when only two satellites are available for each system. In real obstructed environments, the tight integration of the DISB-free model can also improve the positioning performance in terms of positioning availability and accuracy, as well as the ambiguity resolution performance.  相似文献   

15.
The French earth observation satellite SPOT-2 has served as a testbed for precise orbit determination from DORIS doppler tracking in anticipation of the TOPEX/Poseidon mission. Using the most up-to-data gravity field model, JGM-2, a radial orbit accuracy of about 2–9 cm was achieved, with an rms of fit of the tracking data of about 0.64 mm/s. Furthermore, it was found that the coordinates of the ground stations can be determined with an accuracy of the order of 2–5 cm after removal of common rotations, and translations.

Using a slightly different model for atmospheric drag, but the same gravity model, precise orbits of TOPEX/Poseidon from DORIS tracking data were determined with a radial orbit accuracy of the order of 4–5 cm, which is far within the 13 cm mission requirement. This conclusion is based on the analysis of 1-day overlap of successive 11-day orbits, and the comparisons with orbits computed from satellite laser tracking (SLR) and from the combination of SLR and DORIS tracking. Results indicate a consistency between the different orbits of 1–4 cm, 4–20 cm, and 6–13 cm in the radial, cross-track, and along-track directions, respectively. The residual rms is about 4–5 cm for SLR data and 0.56 mm/s for DORIS tracking. These numbers are roughly twice as large as the system noise levels, reflecting the fact that there are still some modeling errors left.  相似文献   


16.
Precision orbit determination on the TOPEX/Poseidon (T/P) altimeter satellite is now being routinely achieved with sub-5cm radial and sub-15 cm total positioning accuracy using state-of-the-art modeling with precision tracking provided by a combination of: (a) global Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or (b) the Global Positioning System (GPS) Constellation which provides pseudo-range and carrier phase observations. The geostationary Tracking and Data Relay Satellite System (TDRSS) satellites are providing the operational tracking and communication support for this mission. The TDRSS Doppler data are of high precision (0.3 mm/s nominal noise levels). Unlike other satellite missions supported operationally by TDRSS, T/P has high quality independent tracking which enables absolute orbit accuracy assessments. In addition, the T/P satellite provides extensive geometry for positioning a satellite at geostationary altitude, and thus the TDRSS-T/P data provides an excellent means for determining the TDRS orbits. Arc lengths of 7 and 10 days with varying degrees of T/P spacecraft attitude complexity are studied. Sub-meter T/P total positioning error is achieved when using the TDRSS range-rate data, with radial orbit errors of 10.6 cm and 15.5 cm RMS for the two arcs studied. Current limitations in the TDRSS precision orbit determination capability include mismodeling of numerous TDRSS satellite-specific dynamic and electronic effects, and in the inadequate treatment of the propagation delay and bending arising from the wet troposphere and ionosphere.  相似文献   

17.
The BeiDou navigation satellite system (BDS) comprises geostationary earth orbit (GEO) satellites as well as inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO) satellites. Owing to their special orbital characteristics, GEO satellites require frequent orbital maneuvers to ensure that they operate in a specific orbital window. The availability of the entire system is affected during the maneuver period because service cannot be provided before the ephemeris is restored. In this study, based on the conventional dynamic orbit determination method for navigation satellites, multiple sets of instantaneous velocity pulses parameters which belong to one of pseudo-stochastic parameters were used to simulate the orbital maneuver process in the orbital maneuver arc and establish the observed and predicted orbits of the maneuvered and non-maneuvered satellites of BeiDou regional navigation satellite system (BDS-2) and BeiDou global navigation satellite system (BDS-3). Finally, the single point positioning (SPP) technology was used to verify the accuracy of the observed and predicted orbits. The orbit determination accuracy of maneuvered satellites can be greatly improved by using the orbit determination method proposed in this paper. The overlapping orbit determination accuracy of maneuvered GEO satellites of BDS-2 and BDS-3 can improve 2–3 orders of magnitude. Among them, the radial orbit determination accuracy of each maneuvered satellite is basically better than 1 m. simultaneously, the combined orbit determination of the maneuvered and non-maneuvered satellites does not have a great impact on the orbit determination accuracy of the non-maneuvered satellites. Compared with the multi GNSS products (indicated by GBM) from the German Research Centre for Geosciences (GFZ), the impact of adding the maneuvered satellites on the orbit determination accuracy of BDS-2 satellites is less than 9 %. Furthermore, the orbital recovery time and the service availability period are significantly improved. When the node of the predicted orbit is traversed approximately 3 h after the maneuver, the accuracy of the predicted orbit of the maneuvered satellite can reach that of the observed orbit. The SPP results for the BDS reached a normal level when the node of the predicted orbit was 2 h after the maneuver.  相似文献   

18.
GPS/DRS/DMAP汽车定位导航系统   总被引:3,自引:0,他引:3  
阐述了一种基于单片机的由速率陀螺、磁罗盘和里程仪组成的新型航迹推算系统及其工作原理,在此基础上设计了多级滤波组合方式GPS(Global Positioning System)/DRS(Dead Reckoning System)汽车定位导航系统,并通过地图匹配进一步提高定位精度,同时利用GSM(Global System for Mobile communications)进行定位数据的无线传输.跑车实验表明该系统具有较高的定位精度和可靠性.  相似文献   

19.
Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.  相似文献   

20.
采用时空守恒元和解元CE/SE(space-time Conservation Element and Solution Element method)法,求解二维Euler方程,开展了翼型绕流的无粘数值模拟研究.用非敏感克朗数计算格式消除克朗数过小引起的数值耗散对解的污染,结合当地时间步长法,解决网格不均匀引起的当地克朗数变化跨度大的问题.对NACA0012翼型的无激波流场进行了二维数值模拟,并与AGARD算例做了对比.结果表明:CE/SE方法的计算结果与AGARD结果吻合得很好,为该数值计算方法对翼型绕流数值模拟的进一步应用奠定了基础.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号