首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this work Multivariate Adaptive Regression B-Splines (BMARS) is applied to regional spatio-temporal mapping of the Vertical Total Electron Content (VTEC) using ground based Global Positioning System (GPS) observations. BMARS is a non-parametric regression technique that utilizes compactly supported tensor product B-splines as basis functions, which are automatically obtained from the observations. The algorithm uses a scale-by-scale model building strategy that searches for B-splines at each scale fitting adequately to the data and provides smoother approximations than the original Multivariate Adaptive Regression Splines (MARS). It is capable to process high dimensional problems with large amounts of data and can easily be parallelized. The real test data is collected from 32 ground based GPS stations located in North America. The results are compared numerically and visually with both the regional VTEC modeling generated via original MARS using piecewise-linear basis functions and another regional VTEC modeling based on B-splines.  相似文献   

2.
基于北斗卫星导航系统(BDS)和全球定位系统(GPS)实测电离层穿刺点(IPP)数据,结合国际参考电离层(IRI)经验模型历史数据,提出一种对区域二维电离层总电子含量(TEC)进行高精度建模的方法.针对缺乏穿刺点的区域内短时间电离层建模时精度较低且各时段穿刺点空间分布不同的问题,该方法使用IRI模型在建模区域内均匀添加虚拟穿刺点数据,并根据与实测穿刺点的距离,使用构造的权重计算公式赋予其动态权重值,通过加权最小二乘法进行球谐模型参数解算.与欧洲定轨中心(CODE)发布的全球电离层图(GIM)进行数据比对发现,相对于只使用BDS/GPS实测穿刺点数据的建模方法,利用本文建模方法计算获得的垂直总电子含量(VTEC)值对缺乏实测穿刺点的区域精度有明显的提升.   相似文献   

3.
The geometry-free linear combination of dual-frequency GNSS reference station ground observations are currently used to build the Vertical Total Electron Content (VTEC) model of the ionosphere. As it is known, besides ionospheric delays, there are differential code bias (DCB) of satellite (SDCB) and receiver (RDCB) in the geometry-free observation equation. The SDCB can be obtained using the International GNSS Service (IGS) analysis centers, but the RDCB for regional and local network receivers are not provided. Therefore, estimating the RDCB and VTEC model accurately and simultaneously is a critical factor investigated by researchers. This study uses Multivariate Adaptive Regression Splines (MARS) to estimate the VTEC approximate model and then substitutes this model in the observation equation to form the normal equation. The least squares method is used to solve the RDCB and VTEC model together. The research findings show that this method has good modeling effectiveness and the estimated RDCB has good reliability. The estimated VTEC model applied to GPS single-frequency precise point positioning has better positioning accuracy in comparison to the IGS global ionosphere map (GIM).  相似文献   

4.
The precise ionosphere modeling is crucial and remains a challenge for GPS positioning and navigation, as well as many other Earth observation systems. In this research, two approaches have been proposed to model the vertical total electron content (VTEC) of the ionosphere using spherical slepian function. For the two-dimensional case, VTEC has been modeled in a sun-fixed reference frame and the three-dimensional approach based on the system of the three-dimensional base functions has been defined as the tensor product of the spherical slepian function for the longitude and latitude in an Earth-fixed reference frame, and the polynomial B-spline function for time. Rather than the spherical harmonics, the spherical slepian functions can be employed to produce the locally and globally orthogonal bases to optimally represent the data in any arbitrary region up to a given degree. The spherical slepian functions have been applied to the real data obtained from the ground-based GPS observation across the western part of the USA.  相似文献   

5.
Due to the limited number and uneven distribution globally of Beidou Satellite System (BDS) stations, the contributions of BDS to global ionosphere modeling is still not significant. In order to give a more realistic evaluation of the ability for BDS in ionosphere monitoring and multi-GNSS contributions to the performance of Differential Code Biases (DCBs) determination and ionosphere modeling, we select 22 stations from Crustal Movement Observation Network of China (CMONOC) to assess the result of regional ionospheric model and DCBs estimates over China where the visible satellites and monitoring stations for BDS are comparable to those of GPS/GLONASS. Note that all the 22 stations can track the dual- and triple-frequency GPS, GLONASS, and BDS observations. In this study, seven solutions, i.e., GPS-only (G), GLONASS-only (R), BDS-only (C), GPS + BDS (GC), GPS + GLONASS (GR), GLONASS + BDS (RC), GPS + GLONASS + BDS (GRC), are used to test the regional ionosphere modeling over the experimental area. Moreover, the performances of them using single-frequency precise point positioning (SF-PPP) method are presented. The experimental results indicate that BDS has the same ionospheric monitoring capability as GPS and GLONASS. Meanwhile, multi-GNSS observations can significantly improve the accuracy of the regional ionospheric models compared with that of GPS-only or GLONASS-only or BDS-only, especially over the edge of the tested region which the accuracy of the model is improved by reducing the RMS of the maximum differences from 5–15 to 2–3 TECu. For satellite DCBs estimates of different systems, the accuracy of them can be improved significantly after combining different system observations, which is improved by reducing the STD of GPS satellite DCB from 0.243 to 0.213, 0.172, and 0.165 ns after adding R, C, and RC observations respectively, with an increment of about 12.3%, 29.4%, and 32.2%. The STD of GLONASS satellite DCB improved from 0.353 to 0.304, 0.271, and 0.243 ns after adding G, C, and GC observations, respectively. The STD of BDS satellite DCB reduced from 0.265 to 0.237, 0.237 and 0.229 ns with the addition of G, R and GR systems respectively, and increased by 10.6%, 10.4%, and 13.6%. From the experimental positioning result, it can be seen that the regional ionospheric models with multi-GNSS observations are better than that with a single satellite system model.  相似文献   

6.
Presently, the ionosphere effect is the main source of the error in the Global Positioning System (GPS) observations. This effect can largely be removed by using the two-frequency measurements, while to obtain the reasonable results in the single-frequency applications, an accurate ionosphere model is required. Since the global ionosphere models do not meet our needs everywhere, the local ionosphere models are developed. In this paper, a rapid local ionosphere model over Iran is presented. For this purpose, the GPS observations obtained from 40 GPS stations of the Iranian Permanent GPS Network (IPGN) and 16 other GPS stations around Iran have been used. The observations have been selected under 2014 solar maximum, from the days 058, 107, 188 and 271 of the year 2014 with different geomagnetic activities. Moreover, ionospheric observables based on the precise point positioning (PPP) have been applied to model the ionosphere. To represent our ionosphere model, the B-spline basis functions have been employed and the variance component estimation (VCE) method has been used to regularize the problem.To show the efficiency our PPP-derived local ionosphere model with respect to the International GNSS Service (IGS) global models, these models are applied on the single point positioning using single-frequency observations and their results are compared with the precise coordinates obtained from the double-differenced solution using dual-frequency observations. The results show that the 95th percentile of horizontal and vertical positioning errors of the single-frequency point positioning are about 3.1 and 13.6?m, respectively, when any ionosphere model are not applied. These values significantly improve when the ionosphere models are applied in the solutions. Applying CODE’s Rapid Global ionosphere map (CORG), improvements of 59% and 81% in horizontal and vertical components are observed. These values for the IGS Global ionosphere map (IGSG) are 70% and 82%, respectively. The best results are obtained from our local ionosphere model, where 84% and 87% improvements in horizontal and vertical components are observed. These results confirm the efficiency of our local ionosphere model over Iran with respect to the global models. As a by-product, the Differential Code Biases (DCBs) of the receivers are also estimated. In this line, we found that the intra-day variations of the receiver DCBs could be significant. Therefore, these variations must be taken into account for the precise ionosphere modeling.  相似文献   

7.
With the continuous deployment of Low Earth Orbit (LEO) satellites, the estimation of differential code biases (DCBs) based on GNSS observations from LEO has gained increasing attention. Previous studies on LEO-based DCB estimation are usually using the spherical symmetry ionosphere assumption (SSIA), in which a uniform electron density is assumed in a thick shell. In this study, we propose an approach (named the SHLEO method) to simultaneously estimate the satellite and LEO onboard receiver DCBs by modeling the distribution of the global plasmaspheric total electron content (PTEC) above the satellite orbit with a spherical harmonic (SH) function. Compared to the commonly used SSIA method, the SHLEO model improves the GPS satellite DCB estimation accuracy by 13.46% and the stability by 22.34%, respectively. Compared to the GPS satellite DCBs estimated based on the Jason-3-only observations, the accuracy and monthly stability of the satellite DCBs can be improved by 14.42% and 26.8% when both Jason-2 and Jason-3 onboard observations are jointly processed. Compared with the Jason-2 solutions, the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations have an improved consistency of better than 18.26% and 9.71% with the products provided by the Center for Orbit Determination in Europe (CODE) and Chinese Academy of Sciences (CAS). Taking the DCB products provided by the German Aerospace Center (DLR) as references, there is no improvement in accuracy of the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations than the Jason-2 solutions alone. A periodic variation is found in the time series of both the Jason-3 and Jason-2 onboard receiver DCB estimates. Preliminary analysis of the PTEC distribution based on the estimated SH coefficients are also presented.  相似文献   

8.
The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation.  相似文献   

9.
Spherical harmonic (SH) expansion is widely used to model the global ionosphere map (GIM) of vertical total electron content (VTEC). According to the impact of different data processing methods of the SH expansion model on the VTEC maps, we specifically performed comprehensive analysis in terms of the data sampling rate, the time resolution, the spherical harmonic degree, and the relative constraint. One month of GPS data (January in 2016) from the International GNSS (Global Navigation Satellite System) Service (IGS) network in a moderate ionospheric activity period at the descending phase of Solar Cycle 24 was processed. To improve the computational efficiency of the daily GIM generation, the data sampling rate of 5?min was recommended allowing the GIM precision loss within 0.10 TECU (total electron content unit). The global VTEC map could be better represented in temporal and spatial domains with higher time resolution and higher spherical harmonic degree, especially at low latitude bands and in the southern hemisphere. The GIM precision improvement was about 10.91% for 1-h and about 15.15% for 0.5-h compared with the commonly used 2-h time resolution. The use of spherical harmonic degree 17 or 20 instead of 15 could improve the precision by 3.19% or 6.06%. We also found that an optimal relative constraint had to be found experimentally considering both the GIM precision and the GIM root mean square (RMS) map.  相似文献   

10.
利用全球定位系统(Global Positioning System,GPS)的双频观测数据反演得到电离层的总电子含量(Total Electron Content,TEC),使得广域甚至全球范围高时空分辨率的电离层观测研究成为可能,但由于GPS卫星和接收机对信号的硬件延迟可导致TEC测量系统偏差,因此,需要探索反演TEC并估测GPS卫星与接收机硬件延迟的有效算法.本文根据电离层电波传播理论,阐述了基于双频GPS观测提取电离层TEC的方法,给出TEC与硬件延迟的基本关系.综合研究了TEC与硬件延迟的反演方法,进行分析与归纳分类,在此基础上提出了有待深入研究的问题.   相似文献   

11.
Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.  相似文献   

12.
The slant total electron content (STEC) of the ionosphere is defined as the integral of the electron density along the ray-path of the signal between the transmitter and the receiver. So-called geometry free GPS measurements provide information on the electron density, which is basically a four-dimensional function depending on spatial position and time. Since ground-based measurements are not very sensitive to the vertical structure within the atmosphere, the ionosphere is often represented by a spherical layer, where all electrons are concentrated. Then the STEC is transformed into the vertical total electron content (VTEC), which is a three-dimensional function depending on longitude, latitude and time.In our approach, we decompose an ionospheric function, i.e. the electron density or the VTEC, into a reference part computed from a given model like the International Reference Ionosphere (IRI) and an unknown correction term expanded in a multi-dimensional series in terms of localizing base functions. The corresponding series coefficients are calculable from GPS measurements applying parameter estimation procedures. Since the GPS receivers are located rather unbalanced, finer structures are modelable just in regions with a sufficient number of observation sites. Due to the localizing feature of B-spline functions we apply a tensor product spline expansion to model the correction term regionally. Furthermore, the multi-resolution representation derived from wavelet analysis allows monitoring the ionosphere at different resolutions levels. We demonstrate the advantages of this procedure by representing a simulated VTEC data set over South America.  相似文献   

13.
基于南极地区国际GNSS服务组织(IGS,International GNSS Service)跟踪站的全球定位系统(GPS,Global Position System)双频实测数据,分析了南极地区电离层延迟的变化情况及其二阶项延迟对南极GPS定位结果的影响.结果表明:南极地区的总电子含量(TEC,Total Electron Content)日间波动频繁,其日间TEC最大值变化较中纬度地区剧烈;在南极地区夏季,电离层二阶项延迟对GPS定位结果的影响可达cm级.同时,由于欧洲定轨中心(CODE,The European Center for Orbit Determination)提供的全球电离层模型(GIM,Global Ionosphere Maps)在南极区域应用的局限性,通过选取南极地区6个IGS跟踪站作为基准站建立了区域电离层TEC模型(RIM,Regional Ionosphere Model).经实测数据计算证明,对于南极地区,RIM的定位精度在一定程度上优于全球电离层模型GIM.  相似文献   

14.
The spatial and temporal variations of ionosphere play an important role in positioning and navigation by the space geodetic techniques. Therefore, the ionospheric gradient should be calculated, analyzed, and applied in both space and time. Spatial gradients of the ionosphere have remarkable delay on the propagation of electromagnetic waves. This study intends to propose a new method for simultaneous modeling of the spatial gradients of ionosphere and VTECs in the local scale for Iran. Vector Spherical Slepian (VSS) base functions are used for the development of this method.Five VSS models with the maximal degrees of L = 30, 35, 40, 45 and 50 are taken into account. For implementing the VSS method, 24 permanent GPS stations from the Iranian Permanent GPS Network (IPGN) have been used. The unknown coefficients are estimated with the observations of these stations with least squares technique. Four other stations are used for evaluating the accuracy of the models. Repeatability of baselines is the measure that is used for this purpose. Based on the results obtained, L = 40 is the optimum degree for the VSS model with this input data over Iran.The baselines’ repeatability showed that ionospheric gradients have more influence on the north–south component. Moreover, the spatial gradient is negligible in the east–west and up-down component when a short baseline is processed. In other words, this kind of ionospheric modeling has significant application for baseline, which is longer than 1000 km. In the study, proposed method has improved the long baselines' solution by more than 12%, 18% and 10% in east–west, north–south and up-down components, respectively.  相似文献   

15.
Currently, ground-based Global Navigation Satellite System (GNSS) stations of the International GNSS Service (IGS) are distributed unevenly around the world. Most of them are located on the mainland, while only a small part of them are scattered on some islands in the oceans. As a consequence, many unreasonable zero values (in fact negative values) appear in Vertical Total Electron Content (VTEC) of European Space Agency (ESA) and Center for Orbit Determination in Europe (CODE) IONEX products, especially in 2008 and 2009 when the solar activities were rather quiet. To improve this situation, we directly implement non-negative physical constraints of ionosphere for global ionosphere maps (GIM) with spherical harmonic functions. Mathematically, we propose an inequality-constrained least squares method by imposing non-negative inequality constraints in the areas where negative VTEC values may occur to reconstruct GIM models. We then apply the new method to process the IGS data in 2008. The results have shown that the new algorithm efficiently eliminates the unwanted behavior of negative VTEC values, which could otherwise often be seen in the current CODE and ESA GIM products in both middle and high latitude areas of the Southern Hemisphere (45°S∼90°S) and the Northern Hemisphere (50°N∼90°N). About 64% of GPS receivers’ DCBs have been significantly improved. Finally, we compare the GIM results between with and without the inequality constraints, which has clearly shown that the GIM result with inequality constraints is significantly better than that without the inequality constraints. The inequality-constrained GIM result is also highly consistent with the final IGS products in terms of root mean squared (RMS) and mean VTEC.  相似文献   

16.
Computerized ionospheric tomography (CIT) is a method to estimate ionospheric electron density distribution by using the global positioning system (GPS) signals recorded by the GPS receivers. Ionospheric electron density is a function of latitude, longitude, height and time. A general approach in CIT is to represent the ionosphere as a linear combination of basis functions. In this study, the model of the ionosphere is obtained from the IRI in latitude and height only. The goal is to determine the best representing basis function from the set of Squeezed Legendre polynomials, truncated Legendre polynomials, Haar Wavelets and singular value decomposition (SVD). The reconstruction algorithms used in this study can be listed as total least squares (TLS), regularized least squares, algebraic reconstruction technique (ART) and a hybrid algorithm where the reconstruction from the TLS algorithm is used as the initial estimate for the ART. The error performance of the reconstruction algorithms are compared with respect to the electron density generated by the IRI-2001 model. In the investigated scenario, the measurements are obtained from the IRI-2001 as the line integral of the electron density profiles, imitating the total electron content estimated from GPS measurements. It has been observed that the minimum error between the reconstructed and model ionospheres depends on both the reconstruction algorithm and the basis functions where the best results have been obtained for the basis functions from the model itself through SVD.  相似文献   

17.
Since the early 1990s, global positioning system measurements have been used to study of the state and rapid changes of the Total Electron Content in the ionosphere. Currently, the increasing number of permanent stations makes it possible to generate maps of the irregularities in the ionosphere for specified regions with sub-daily resolution. The main goal of this work was to apply global navigation satellite system observations to obtain information about ionospheric variability around the North Geomagnetic Pole. In order to detect the ionospheric disturbances, 30-s observation data was used. The Rate of Total Electron Content Index was applied as a measure of the variability in the ionosphere. The first analyses were executed using more than 100 permanent stations. The results show two kinds of products: 2-hour maps in spherical geomagnetic coordinates and daily maps presenting the occurrence of the strong Total Electron Content fluctuations as a magnetic local time function, for the most disturbed days of April 2010. Apart from the main product of the algorithm, the Rate of Total Electron Content time series for individual satellite tracks was presented. The results demonstrated very good sensitivity of the obtained maps, which can detect even quite weak disturbances. The presented algorithm developed at the Geodynamic Research Laboratory of the University of Warmia and Mazury, in cooperation with Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, will be applied in the near future to create near-real time service of the conditions in the ionosphere based on the Global Navigation Satellite Systems observations.  相似文献   

18.
The time series of hourly electron density profiles N(h) obtained from 27 ionosonde stations distributed world-wide have been used to obtain N(h) average profiles on a monthly basis and to extract the expected bottom-side parameters that define the IRI profile under quiet conditions. The time series embrace the time interval from 1998 to 2006, which practically contains the entire solar cycle 23. The Spherical Harmonic Analysis (SHA) has been used as an analytical technique for modeling globally the B0 and B1 parameters as general functions on a spherical surface. Due to the irregular longitudinal distribution of the stations over the globe, it has been assumed that the ionosphere remains approximately constant in form for a given day under quiet conditions for a particular coordinate system. Since the Earth rotates under a Sun-fixed system, the time differences have been considered to be equivalent to longitude differences. The time dependence has been represented by a two-degree Fourier expansion to model the annual and semiannual variations and the year-by-year analyses of the B0 and B1 have furnished nine sets of spherical harmonic coefficients for each parameter. The spatial–temporal yearly coefficients have been further expressed as linear functions of Rz12 to model the solar cycle dependence. The resultant analytical model provides a tool to predict B0 and B1 at any location distributed among the used range of latitudes (70°N–50°S) and at any time that improves the fit to the observed data with respect to IRI prediction.  相似文献   

19.
针对单频接收机的电离层延迟改正问题, 提出了一种基于系数择优的低阶球谐电离层延迟改正模型. 按照电离层延迟改正模型参数择优问题的描述, 明确参数优化的目标和约束条件, 根据参数选择可编码的特点, 提出了利用遗传算法进行参数择优的方法及步骤. 以欧洲定轨中心(CODE)提供的电离层数据作为参考标准, 对参数择优模型、 低阶球谐模型和Klobuchar模型模拟的区域电离层VTEC精度进行了比较分析. 结果表明, 较之相同系数个数的低阶球谐模型, 参数择优模型精度平均改进了1~2TECU, 而且比Klobuchar模型及低阶球谐模型能更好地反映电离层的周日变化及纬度变化特征.   相似文献   

20.
The solar, geomagnetic, gravitational and seismic activities can cause spatial and temporal (hourly, diurnal, seasonal and annual) variabilities of the ionosphere. Main observable ionospheric parameters such as Total Electron Content (TEC) can be used to quantify these. TEC is the total number of electrons on a ray path crossing the atmosphere. The network of world-wide Global Positioning System (GPS) receivers provide a cost-effective solution in estimating TEC over a significant proportion of global land mass. This study is focused on the analysis of the variations of ionosphere over a midlatitude region using GPS-TEC estimates for three Sun Spot Numbers (SSN) periods. The investigation is based on a fast and automatic variability detection algorithm, Differential Rate Of TEC (DROT). The algorithm is tested using literature data on disturbances generated by a geomagnetic activity, a Solar Flare, a Medium Scale Travelling Ionospheric Disturbance (MSTID), a Large Scale TID (LSTID) and an earthquake. Very good agreement with the results in the literature is found. DROT is applied to IONOLAB-TEC estimates from nine Turkish National Permanent GPS Network (TNPGN Active) stations over Turkey to detect the any wave-like oscillations, sudden disturbances and other irregularities during December, March, June, September months for 2010, 2011, 2012 years. It is observed that DROT algorithm is capable of detecting both small and large scale variability due to climatic, gravitational, geomagnetic and solar activities in all layers of ionosphere. The highest DROT values are observed in 2010 during winter months. In higher solar activity years of 2011 and 2012, DROT is able to indicate both seasonal variability and severe changes in ionosphere due to increased number of geomagnetic storms and local seismic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号