首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
The TOPEX/Poseidon, Jason-1 and Jason-2 set of altimeter data now provide a time series of synoptic observations of the ocean that span nearly 17 years from the launch of TOPEX in 1992. The analysis of the altimeter data including the use of altimetry to monitor the global change in mean sea level requires a stable, accurate, and consistent orbit reference over the entire time span. In this paper, we describe the recomputation of a time series of orbits that rely on a consistent set of reference frames and geophysical models. The recomputed orbits adhere to the IERS 2003 standards for ocean and earth tides, use updates to the ITRF2005 reference frame for both the SLR and DORIS stations, apply GRACE-derived models for modeling of the static and time-variable gravity, implement the University College London (UCL) radiation pressure model for Jason-1, use improved troposphere modeling for the DORIS data, and apply the GOT4.7 ocean tide model for both dynamical ocean tide modeling and for ocean loading. The new TOPEX orbits have a mean SLR fit of 1.79 cm compared to 2.21 cm for the MGDR-B orbits. These new TOPEX orbits agree radially with independent SLR/crossover orbits at 0.70 cm RMS, and the orbit accuracy is estimated at 1.5–2.0 cm RMS over the entire TOPEX time series. The recomputed Jason-1 orbits agree radially with the Jason-1 GDR-C orbits at 1.08 cm RMS. The GSFC SLR/DORIS dynamic and reduced-dynamic orbits for Jason-2 agree radially with independent orbits from the CNES and JPL at 0.70–1.06 cm RMS. Applying these new orbits, and using the latest altimeter corrections for TOPEX, Jason-1, and Jason-2 from September 1992 to May 2009, we find a global rate in mean sea level of 3.0 ± 0.4 mm/yr.  相似文献   

2.
Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are a necessity. With the launch of the TOPEX/Poseidon mission in 1992 a still on-going time series of high-accuracy altimetry measurements of ocean topography started, continued by the altimetry missions Jason-1 in 2001 and Jason-2/OSTM in 2008. This paper contributes to the on-going orbit reprocessing carried out by several groups and presents the efforts of the Navigation Support Office at ESA/ESOC using its NAPEOS software for the generation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. Data of all three tracking instruments on-board the satellites (beside the altimeter), i.e. GPS, DORIS, and SLR measurements, were used in a combined data analysis. About 7 years of Jason-1 data and more than 1 year of Jason-2 data were processed. Our processing strategy is close to the GDR-C standards. However, we estimated slightly different scaling factors for the solar radiation pressure model of 0.96 and 0.98 for Jason-1 and Jason-2, respectively. We used 30 s sampled GPS data and introduced 30 s satellite clocks stemming from ESOC’s reprocessing of the combined GPS/GLONASS IGS solution. We present the orbit determination results, focusing on the benefits of adding GPS data to the solution. The fully combined solution was found to give the best orbit results. We reach a post-fit RMS of the GPS phase observation residuals of 6 mm for Jason-1 and 7 mm for Jason-2. The DORIS post-fit residuals clearly benefit from using GPS data in addition, as the DORIS data editing improves. The DORIS observation RMS for the fully combined solution is with 3.5 mm and 3.4 mm, respectively, 0.3 mm better than for the DORIS-SLR solution. Our orbit solution agrees well with external solutions from other analysis centers, as CNES, LCA, and JPL. The orbit differences between our fully combined orbits and the CNES GDR-C orbits are of about 0.8 cm for Jason-1 and at 0.9 cm for Jason-2 in the radial direction. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The 3D-RMS of the orbit differences reveals a good orbit consistency at 2.7 cm and 2.9 cm for Jason-1 and Jason-2. Our resulting orbit series for both Jason satellites refer to the ITRF2005 reference frame and are provided in sp3 file format on our ftp server.  相似文献   

3.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   

4.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   

5.
The NASA GSFC DORIS analysis center has provided weekly DORIS solutions from November 1992 to January 2009 (839 SINEX files) of station positions and Earth Orientation Parameters for inclusion in the DORIS contribution to ITRF2008. The NASA GSFC GEODYN orbit determination software was used to process the orbits and produce the normal equations. The weekly SINEX gscwd10 submissions included DORIS data from Envisat, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5. The orbits were mostly seven days in length (except for weeks with data gaps or maneuvers). The processing used the GRACE-derived EIGEN-GL04S1 gravity model, updated modeling for time-variable gravity, the GOT4.7 ocean tide model and tuned satellite-specific macromodels for SPOT-2, SPOT-3, SPOT-4, SPOT-5 and TOPEX/Poseidon. The University College London (UCL) radiation pressure model for Envisat improves nonconservative force modeling for this satellite, reducing the median residual empirical daily along-track accelerations from 3.75 × 10−9 m/s2 with the a priori macromodel to 0.99 × 10−9 m/s2 with the UCL model. For the SPOT and Envisat DORIS satellite orbits from 2003 to 2008, we obtain average RMS overlaps of 0.8–0.9 cm in the radial direction, 2.1–3.4 cm cross-track, and 1.7–2.3 cm along-track. The RMS orbit differences between Envisat DORIS-only and SLR & DORIS orbits are 1.1 cm radially, 6.4 cm along-track and 3.7 cm cross-track and are characterized by systematic along-track mean offsets due to the Envisat DORIS system time bias of ±5–10 μs. We obtain a good agreement between the geometrically-determined geocenter parameters and geocenter parameters determined dynamically from analysis of the degree one terms of the geopotential. The intrinsic RMS weekly position repeatability with respect to the IDS-3 combination ranges from 2.5 to 3.0 cm in 1993–1994 to 1.5 cm in 2007–2008.  相似文献   

6.
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) is a tracking technique based on a one-way ground to space Doppler link. For Low Earth Orbit (LEO) satellites, DORIS shows a robust capability in terms of data coverage and availability, due to a wide and well-distributed ground network, where data are made available by the International Doris Service (IDS). However, systematic errors remain in the DORIS data, such as instabilities of the on-board clock due to radiation encountered in space, which limit the accurate determination of station positions.The DORIS on-board clock frequency stability is degraded by the increased radiation found in the region of the South Atlantic Anomaly (SAA) and has been shown to degrade station position estimation. This paper introduces a new model correction to the DORIS data for the frequency of the Jason-2 Ultra Stable Oscillator (USO), derived from the Time Transfer by Laser Link (T2L2) experiment (Belli and Exertier, 2018). We show that a multi-satellite DORIS solution including this T2L2-corrected data applied to the frequency modelling for The DORIS data, improves the estimation of station coordinates. We show the tie residuals with respect to collocated GPS stations are improved by several millimeters. We also demonstrate that the 117-day (Jason-2) draconitic signal in the geophysical parameters is reduced, implying that the origin of this signal is not just solar radiation pressure mis-modeling, but also radiation-induced clock perturbations on the Jason-2 DORIS Ultra-Stable-Oscillator (USO). Finally we demonstrate through comparisons with the International Earth Rotations and Reference Systems Service (IERS) C04 series for Earth Orientation Parameters (EOP), that the estimation of EOP is improved in both a Jason-2 DORIS-only and a multi-satellite DORIS solution for EOP.  相似文献   

7.
基于单频星载GPS数据的低轨卫星精密定轨   总被引:1,自引:0,他引:1  
为满足搭载单频GPS接收机低轨卫星的精密定轨需求以及深化单频定轨研究,文中解决了单频星载GPS数据的周跳探测问题,并利用“海洋二号”(HY-2A)卫星及“资源三号”(ZY-3)卫星的单频星载GPS实测数据采用两种方法确定了二者的简化动力学轨道,并通过观测值残差分析、与双频精密轨道比较、激光测卫数据检核等方法对所得轨道精度进行评定。结果表明,在不考虑电离层延迟影响的情况下,HY-2A卫星定轨精度为2~3dm,ZY-3卫星为1m左右;而采用半和改正组合消除电离层延迟一阶项影响后,二者定轨精度均显著提高,HY-2A卫星三维精度提高至1dm左右,ZY-3卫星提高至1~2dm。文章的研究成果表明,搭载单频GPS接收机的低轨卫星也可获得厘米级的定轨精度。  相似文献   

8.
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first European Space Agency’s (ESA) Earth Explorer core mission. Through its extremely low, about 260?km above the Earth, circular, sun-synchronous orbit, the satellite gained high spatial resolution and accuracy gravity gradient, and ocean circulation data. Global Positioning System (GPS) receivers, mounted on the spacecraft, allowed the determination of reduced-dynamic and kinematic GOCE orbits, whereas Laser Retroreflector Array (LRA) dedicated to Satellite Laser Ranging (SLR) allowed an independent validation of GPS-derived orbits. In this paper, residuals between different GPS-based orbit types and SLR observations are used to investigate the sensitivity and the influence of solar, geomagnetic, and ionospheric activities on the quality of kinematic and reduced-dynamic GOCE orbits. We also analyze the quality of data provided by individual SLR sites, by detecting time biases using ascending and descending sun-synchronous GOCE orbit passes, and the residual analysis of the measurement characteristics, i.e., the dependency of SLR residuals as a function of nadir and horizontal angles. Results show a substantial vulnerability of kinematic orbit solutions to the solar F10.7 index and the ionospheric activity measured by the variations of the Total Electron Content (TEC) values. The sensitivity of kinematic orbits to the three-hour-range KP index is rather minor. The reduced-dynamic orbits are almost insensitive to indices describing ionospheric, solar, and geomagnetic activities. The investigation of individual SLR sites shows that some of them are affected by time bias errors, whereas other demonstrate systematics, such as a dependency between observation residuals and the satellite nadir angle or the horizontal azimuth angle from the SLR station to the direction of the satellite.  相似文献   

9.
In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10?s averaged Doppler tracking pass residuals is approximately 0.39?mm/s; and the average of the laser tracking pass residuals becomes 1.42?cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25?cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of ?0.15 to +0.15?mm/s.  相似文献   

10.
DORIS system: The new age   总被引:1,自引:0,他引:1  
The boarding of the first DGXX DORIS instrument on Jason-2 mission gives us the opportunity to present the improvements that have been implemented on the DORIS system. The goal of this paper is to present information about the new capacities of the DORIS system and to give the current status of its components. An overview of the DORIS system, the International DORIS Service and the Jason-2 satellite mission are first presented. Then the new characteristics of the on-board instrument are detailed. The capacity to track up to seven ground beacons simultaneously dramatically increases the number of measurements performed: a factor of three increase over Jason-1 is observed at the altitude of 1330 km. It also increases the diversity of directions of observation and allows low elevation measurements from 0°. The new phase measurements capability allows now phase processing. The instability of the Jason-1 USOs (Ultra-Stable Oven-controlled quartz oscillator) while crossing the South Atlantic Anomaly has been solved by decreasing the sensitivity to radiation by a factor of 10. New features of the on-board software enhance the coastal and inland water altimetry and increase the robustness of the data. The new software also improves the real time orbit accuracy for operational altimetry. The improvements introduced concurrently on the ground segment have also significantly enhanced capability. The new RINEX exchange formats provide simultaneous phase and pseudo-range measurements. The maintenance of the DORIS Beacons Network and the work done by the DORIS Signal Integrity monitoring team lead to an increased availability of the Network from 75% to 90% and so to a more homogenous orbit coverage.  相似文献   

11.
12.
Dual-satellite altimeter crossover differences between ERS-1 and TOPEX/Poseidon have been included as supplementary tracking data in ERS-1 orbit computations from SLR and single-satellite crossover differences. It was found that including the dual-satellite crossover differences slightly improves the ERS-1 radial orbit accuracy of about 12 cm for orbits computed with the JGM-2 gravity field and also leads to a better ‘centering’ of the ERS-1 orbit in the terrestrial reference frame defined for TOPEX/Poseidon. In addition to this dynamic orbit improvement technique, a non-dynamic technique has been investigated that removes the larger part of the ERS-1 radial orbit error from the dual-satellite crossover difference residuals. For ERS-1 orbits computed with the GEM-T2 gravity field, it was found that the non-dynamic technique could improve the radial orbit accuracy from 140 cm to the same level of accuracy as the ERS-1 JGM-2 orbits.  相似文献   

13.
The in situ validation of the satellite altimeter sea surface heights is generally performed either at a few local points directly flown over by the satellites or using the global tide gauge network. A regional in situ calibration method was developed by NOVELTIS in order to monitor the altimeter data quality in a perimeter of several hundred kilometres around a given in situ calibration site. The primary advantage of this technique is its applicability not only for missions flying over dedicated sites but also for missions on interleaved or non repetitive orbits. This article presents the altimeter bias estimates obtained with this method at the Corsican calibration site, for the Jason-1 mission on its nominal and interleaved orbits as well as for the Jason-2 and Envisat missions. The various regional bias estimates (8.2 cm and 7.4 cm for Jason-1 respectively on the nominal and interleaved orbits in Senetosa, 16.4 cm for Jason-2 in Senetosa and 47.0 cm for Envisat in Ajaccio, with an accuracy between 2.5 cm and 4 cm depending on the mission) are compared with the results obtained by the other in situ calibration teams. This comparison demonstrates the coherency at the centimetre level, the stability and the generic character of the method, which would also be of benefit to the new and future altimeter missions such as Cryosat-2, SARAL/AltiKa, Sentinel-3, Jason-3, Jason-CS.  相似文献   

14.
The French earth observation satellite SPOT-2 has served as a testbed for precise orbit determination from DORIS doppler tracking in anticipation of the TOPEX/Poseidon mission. Using the most up-to-data gravity field model, JGM-2, a radial orbit accuracy of about 2–9 cm was achieved, with an rms of fit of the tracking data of about 0.64 mm/s. Furthermore, it was found that the coordinates of the ground stations can be determined with an accuracy of the order of 2–5 cm after removal of common rotations, and translations.

Using a slightly different model for atmospheric drag, but the same gravity model, precise orbits of TOPEX/Poseidon from DORIS tracking data were determined with a radial orbit accuracy of the order of 4–5 cm, which is far within the 13 cm mission requirement. This conclusion is based on the analysis of 1-day overlap of successive 11-day orbits, and the comparisons with orbits computed from satellite laser tracking (SLR) and from the combination of SLR and DORIS tracking. Results indicate a consistency between the different orbits of 1–4 cm, 4–20 cm, and 6–13 cm in the radial, cross-track, and along-track directions, respectively. The residual rms is about 4–5 cm for SLR data and 0.56 mm/s for DORIS tracking. These numbers are roughly twice as large as the system noise levels, reflecting the fact that there are still some modeling errors left.  相似文献   


15.
For Precise Orbit Determination of altimetry missions, we have computed a data set of DORIS station coordinates defined for specific time intervals called DPOD2005. This terrestrial reference set is an extension of ITRF2005. However, it includes all new DORIS stations and is more reliable, as we disregard stations with large velocity formal errors as they could contaminate POD computations in the near future. About 1/4 of the station coordinates need to be defined as they do not appear in the original ITRF2005 realization. These results were verified with available DORIS and GPS results, as the integrity of DPOD2005 is almost as critical as its accuracy. Besides station coordinates and velocities, we also provide additional information such as periods for which DORIS data should be disregarded for specific DORIS stations, and epochs of coordinate and velocity discontinuities (related to either geophysical events, equipment problem or human intervention). The DPOD model was tested for orbit determination for TOPEX/Poseidon (T/P), Jason-1 and Jason-2. Test results show DPOD2005 offers improvement over the original ITRF2005, improvement that rapidly and significantly increases after 2005. Improvement is also significant for the early T/P cycles indicating improved station velocities in the DPOD2005 model and a more complete station set. Following 2005 the radial accuracy and centering of the ITRF2005-original orbits rapidly degrades due to station loss.  相似文献   

16.
The DORIS instrument on Jason-2 is the first of a new generation. The satellite receivers have now seven simultaneous measurement channels, with synchronous dual frequency phase and pseudo-range measurements. These measurements are now described in a similar manner as GPS measurements and an extension of the RINEX 3.0 format has been defined for DORIS. Data are available to users with a shorter latency.  相似文献   

17.
With the continuous deployment of Low Earth Orbit (LEO) satellites, the estimation of differential code biases (DCBs) based on GNSS observations from LEO has gained increasing attention. Previous studies on LEO-based DCB estimation are usually using the spherical symmetry ionosphere assumption (SSIA), in which a uniform electron density is assumed in a thick shell. In this study, we propose an approach (named the SHLEO method) to simultaneously estimate the satellite and LEO onboard receiver DCBs by modeling the distribution of the global plasmaspheric total electron content (PTEC) above the satellite orbit with a spherical harmonic (SH) function. Compared to the commonly used SSIA method, the SHLEO model improves the GPS satellite DCB estimation accuracy by 13.46% and the stability by 22.34%, respectively. Compared to the GPS satellite DCBs estimated based on the Jason-3-only observations, the accuracy and monthly stability of the satellite DCBs can be improved by 14.42% and 26.8% when both Jason-2 and Jason-3 onboard observations are jointly processed. Compared with the Jason-2 solutions, the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations have an improved consistency of better than 18.26% and 9.71% with the products provided by the Center for Orbit Determination in Europe (CODE) and Chinese Academy of Sciences (CAS). Taking the DCB products provided by the German Aerospace Center (DLR) as references, there is no improvement in accuracy of the GPS satellite DCB estimates based on the fusion of Jason-2 and Jason-3 observations than the Jason-2 solutions alone. A periodic variation is found in the time series of both the Jason-3 and Jason-2 onboard receiver DCB estimates. Preliminary analysis of the PTEC distribution based on the estimated SH coefficients are also presented.  相似文献   

18.
A major interest of radar altimetry over rivers is to monitor water resources and associated risk in basins where there is little or no conventional in situ data. The objective of the present study is to calibrate altimetry data in a place where conventional data are available, and use the results to estimate the potential error committed in the estimation of water levels in an ungauged or poorly gauged basin. The virtual stations extracted with Jason-2 in this study concern a very broad sample of river channel width and complexity. Minimum channel width has been estimated at 400 m. Unlike TOPEX/Poseidon (T/P), Jason-2 seems to have the capability to distinguish the river bed from its floodplain. The quality of the results obtained with Jason-2 is incomparably better than that obtained with T/P. Despite the fact that no absolute calibration has been assessed for river in this study, the bias calculated converge around 0, 35 m, which could be then the error estimated on the water stage derived from Jason-2 ranges, when no other validation is available. ICE3 algorithm seems to be performing as well as ICE1, and further research is needed to design retracking algorithm specifically for continental water.  相似文献   

19.
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001–2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.  相似文献   

20.
This paper gives an overview of the DORIS related activities at the Navigation Support Office of the European Space Operations Centre. The DORIS activities were started in 2002 because of the launch of the Envisat satellite where ESOC is responsible for the validation of the Envisat Precise Orbits and a brief overview of the key Envisat activities at ESOC is given. Typical orbit comparison RMS values between the CNES POE (GDR-C) and the ESOC POD solution is 6.5, 18.8 and 23.1 mm in radial-, along- and cross-track direction. In the framework of the generation of the ITRF2008 ESOC participated in the reprocessing of all three space geodetic techniques; DORIS, SLR, and GPS. Here the main results of our DORIS reprocessing, in the framework of the International DORIS Service (IDS), are given. The WRMS of the weekly ESOC solution (esawd03) for the 2004–2009 period compared to the IDS-1 combined solution is of the order of 12 mm. Based on the long time series of homogeneously processed data a closer look is taken at the estimated solar radiation pressure parameters of the different satellites used in this DORIS analysis. The main aim being the stabilization of the Z-component of the geocentre estimates. We conclude that the ESOC participation to the IDS ITRF2008 contribution has been beneficial for both ESOC and the IDS. ESOC has profited significantly from the very open and direct communications and comparisons that took place within the IDS during the reprocessing campaign.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号