首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 598 毫秒
1.
相变储能技术在航空航天等领域具有广泛的应用前景,但是相变材料导热性能差制约了其工程化应用。高导热的纳米材料能够有效提高相变材料的导热性能。为了对其相变现象进行更精细的模拟分析,基于Maxwell-Garnett等效介质理论(EMT)建立3种具有代表性结构的纳米复合相变材料详细物性参数,将流体体积(VOF)模型与焓-多孔介质模型相耦合,在考虑相变材料体积膨胀的情况下,数值模拟了纯石蜡、添加不同体积组分金刚石纳米粒子(ND)、单壁碳纳米管(SWCNT)和石墨烯纳米片(GnP)的纳米复合相变材料在定温边界条件下的固液相变过程。结果表明:相变材料熔化过程中对流效应主要分布在临近固液相界面、临近加热壁面及临近气液两相交界面这3个区域;3种纳米粒子中GnP的导热强化效果最佳,相比纯石蜡,添加体积分数为3%的GnP纳米复合相变材料固相导热系数提高了486%,相变材料的熔化时间缩短了69%;升高壁面温度能够有效缩短复合相变材料的熔化时间。   相似文献   

2.
为解决高温工作环境下电子芯片的发热问题,设计采用相变材料(PCM)的控温模块,建立相变材料的控温模块模型。相变材料选择高碳醇/膨胀石墨复合材料。借助FLUENT软件进行数值模拟,探究在相同加热功率下,加热面积对控温时间的影响。对控温模块的几何尺寸进行参数分析,将数值模拟结果用于训练人工神经网络,实现对控温时间的预测。根据芯片发热功耗、芯片尺寸,通过NGSA-Ⅱ多目标优化算法优化控温模块几何尺寸,延长控温时间,降低模块质量。最终得到一系列非支配解集,可根据控温时间需求选择合适的模块尺寸设计。针对长宽为35.4 mm、发热功率为15 W的芯片进行控温模块优化设计。环境温度为80℃,温控目标小于90℃,控温时间180 s,优化后模块减重13.0%,模块内温度与液相分布也更均匀。   相似文献   

3.
为研究泡沫铜/低熔点合金(LMPA)复合相变材料在间歇放热工作环境下恢复至初始状态的能力及不同孔隙率泡沫铜的添加对其凝固放热过程的影响,通过数值模拟对比分析了47合金、正二十三烷与泡沫铜复合前后的凝固放热过程,并调节泡沫铜/47合金复合材料孔隙率计算模拟芯片温度在凝固放热过程中温度随时间变化曲线。结果表明:泡沫铜的添加对2类材料凝固过程均有促进作用,模拟芯片恢复至目标温度所需时间分别被缩短6.6%和47.7%。因体积潜热值的差距,泡沫铜/47合金凝固时需放出更多热量,恢复至目标温度的时间较长,是正二十三烷复合相变材料的1.52倍。随着孔隙率的增大,复合相变材料恢复至室温状态所用时长变化不大,考虑到孔隙率对相变热控过程中的影响,实际使用时应综合考虑。   相似文献   

4.
微重力条件下泡沫复合相变材料蓄热装置数值仿真   总被引:1,自引:1,他引:1       下载免费PDF全文
相变材料由于相变过程中吸收或者释放大量能量且过程近似等温这一特性而有巨大的应用潜力,将相变材料蓄热装置应用于航天器是维持航天器内各个单元工作温度的一种有效方法.提出一种基于正二十烷的相变蓄热结构方案,分别填充泡沫铜与泡沫碳作为基体材料来强化相变材料的传热性能.通过对该模型进行数值仿真计算,得到相变蓄热装置温度、固液相界面位置随时间的变化等有效数据,分析泡沫相变蓄热材料在微重力条件下相变界面的演变过程.结果显示,得益于其较高的导热系数,泡沫复合相变材料可将热源热量有效分散到其他区域,减缓热源面温度上升速度,并且降低重力变化对传热的影响.所得数据结果为泡沫复合相变材料的工程应用提供了科学依据.   相似文献   

5.
受试验设备能力限制,地面风洞无法完全模拟高超声速飞行器临近空间热环境。文章采用在飞行器表面开孔安装长时耐高温热流传感器直接测量热流密度的方法,国内首次获得Ma12以上高超声速飞行器表面热流密度时变数据和边界层转捩特征。实测热流值与理论预示值规律相同,两者偏差小于20%。针对树脂基材料导热微分方程中虽考虑了热解吸热项,但未考虑导热系数随温度变化情况,采用在树脂基材料导热微分方程中加入物性参数随温度变化项的方法,计算了飞行器热防护结构内部分层温度和碳化层厚度,并与实测结果进行了比较,不考虑树脂热解特性和材料物性参数随温度变化,理论值高于实测值,最大偏差275~320℃;考虑热解特性和物性参数随温度变化情况,计算值与实测值最大偏差小于70℃。  相似文献   

6.
<正> 兹定于1982年第四季度召开第三届中国空间热物理学术会议. 征文内容: 1.航天器的热设计:航天器的外热流计算;航天器轨道段温度计算和分析;各种温控机构:热管、百叶窗、热开关、旋转盘、相变材料、辐射器等;航天  相似文献   

7.
近年来,泡沫金属作为填充材料在强化传热方面的功效已被越来越多的研究证实.采用泡沫铜和水构成新型复合相变材料,制成一种高效储能装置,通过模拟实验研究,测试了这种储能装置在冷藏装备上的保温效果.进而采用准稳态法建立了复合相变材料的数学模型并进行了数值仿真计算,计算结果与实验测试结果相符.实验和数值仿真结果都表明,相对传统储能装置,新型储能装置充冷迅速而充分,整体的传热速率和储能效率得到了显著提高,在冷藏运输中有非常好的应用前景.   相似文献   

8.
发汗冷却是解决高速飞行器关键部位热防护问题的有效途径。以不同材料的多孔平板为研究对象,以水为冷却剂,利用自行设计搭建的试验平台对多孔平板发汗冷却过程进行瞬态试验测量,得到了不同热流加热环境下不同材料多孔平板内外壁温度变化,并分析冷却剂对不同材料的冷却效果。结果表明:发汗冷却极大降低了多孔平板内外壁温度,起到了有效的主动热防护作用。对于镍、铜金属多孔平板,保持冷却剂水流量约3.5 g/s,在热流密度小于120 kW/m2的条件下,多孔平板内外壁温度稳定在30~50℃。对于陶瓷多孔平板,保持冷却剂水流量约0.32 g/s,在热流密度小于220 kW/m2的条件下,多孔平板内外壁温度基本稳定在30~40℃。在高热流密度315 kW/m2的条件下,对于镍、铜金属和陶瓷多孔平板,发汗冷却时平板内壁温度变化不大,外壁温度分别稳定在约260℃、110℃和130℃。外壁冷却剂处于完全汽化状态,且冷却剂汽化相变位置在多孔平板内部。若无发汗冷却,多孔平板内外壁温度快速升高,其平衡温度较有发汗冷却时大幅提高,进一步表明发汗冷却的巨大应用潜力。   相似文献   

9.
锂电池相变材料/风冷综合热管理系统温升特性   总被引:1,自引:1,他引:0  
锂电池在高倍率充放电过程中会产生大量热量,此热量不及时散出会导致电池超温进而影响电池的使用寿命,甚至导致安全事故。本文设计了一种新型相变材料/风冷综合热管理系统(TMS),并对综合热管理方式下的电池温升特性进行了实验和理论研究。基于集总参数法,结合电池生热及散热机理,建立了电池发热功率计算模型以及相变材料/风冷综合TMS电池温度场数学模型,计算了电池单体发热功率,分析了环境温度、电池充放电循环初始温度、相变温度、对流热阻以及电池和相变材料之间的导热热阻对电池综合TMS性能的影响。结果表明:综合TMS的冷却性能优于纯风冷热管理系统;电池充放电过程为非稳态传热过程,因此较高的初始温度带来超温风险;电池温度场数学模型能准确反映电池升温行为;较高的环境温度下,电池最大温升幅度降低,但可能导致电池最高温度超过安全温度;相变材料的相变温度越低,电池最大温升越低;减小导热热阻及对流热阻能显著提高TMS性能。  相似文献   

10.
一种空间相变换热器热设计与仿真分析及其改进   总被引:1,自引:1,他引:0       下载免费PDF全文
基于相变计算方法即焓法处理相变材料凝固/融化模型,对一个以水为主动冷却介质,内填充石蜡类相变蓄热材料的板式相变换热器的换热进行数值模拟.得到了不同重力条件下冷却面的温度分布,相变材料在融化过程中的动态温度场分布、相变界面分布、融化时间等结果,验证了该相变换热器的可行性.对比该相变换热器在重力与微重力不同条件下的性能差异,利用添加强化传热肋片与泡沫复合相变材料方法,提高了微重力条件下该类相变换热器的效率,可为空间相变蓄热装置的设计及实验研究提供重要参考.   相似文献   

11.
泡沫铜作为填充材料的相变储热实验   总被引:3,自引:1,他引:2  
对填充有泡沫铜的固-液相变储热装置进行了试验研究.采用纯度为98%的正21烷(C21H44)作为相变材料(PCM),通过抽真空灌注的方法将其灌注到泡沫铜内部,封装并作绝热处理后作为试验件.在进行储热试验时,用嵌入了加热棒的铝制底座模拟被散热件对试验件加热,利用探针式和贴片式铂电阻(pt100)测量试验件温度并通过数据采集仪进行采集.整理绘制了在不同加热功率下的温度时间曲线,讨论和分析了此装置的热性能,结果表明泡沫铜作为填充材料能明显改善相变储能装置的传热性能和内部温度均匀性.   相似文献   

12.
高温熔盐相变蓄热系统的数值模拟   总被引:4,自引:0,他引:4  
对空间站吸热器高温熔盐相变蓄热地面模拟系统进行了数值分析,得到了太阳模拟器功率、循环工质气体出口温度、相变材料容器壁温等参数的瞬态变化曲线,计算结果表明单元换热管的蓄/放热性能达到了设计要求.  相似文献   

13.
为了解微重力条件下空穴对相变传热过程的影响,在焓法的基础上增加了基于温度排序算法的空穴模型,在求解过程分析了温度场和空穴之间的相互作用;建立了相变装置的二维模型;研究了空穴在周期外热流条件下的移动规律。结果表明,从初始时刻到第8个轨道周期,低温区空穴逐渐消失并在高温区出现,空穴沿等温线方向扩散并最终积聚在高温边界附近,空穴的移动使传热路径上的热阻增大,导致相变装置冷热边界的传热温差增加了3℃。  相似文献   

14.
为分析光纤陀螺(FOG,Fiber-Optic Gyroscope)受外界环境变化温度影响导致产生Shupe误差,采用热电类比法对不同结构形式的光纤环(FOR,Fiber Optical Ring)模块进行热分析,比较对应的电路模型,提出并联的热容和串联的电阻是影响FOG温度性能的关键因素.采用有限元热仿真定性分析了并联的热容和串联的电阻对FOG温度的影响,验证了电路模型的正确性;在与热仿真相同条件下,通过温箱实验,将FOR温度变化与FOG输出性能建立关联.结果表明,通过加大FOR模块连接处的串联热阻和并联热容,可有效降低FOR的瞬时温差,尤其是较大的热容能有效减小FOR温变速率,从而减小Shupe误差,改善FOG的温度性能.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号