首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 126 毫秒
1.
太阳活动与热层大气密度的相关性研究   总被引:3,自引:2,他引:1  
为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.   相似文献   

2.
强磁暴、能量粒子暴与热层大气密度涨落之间的相关关系   总被引:2,自引:0,他引:2  
利用1997-2007年由GOES8, GOES11和GOES12星载高能粒子探测器在地球同步轨道高度上所探测到的高能质子和高能电子通量探测数据以及高度560km左右星载大气密度探测器所得的热层大气密度探测数据, 统计分析了强地磁扰动、高能粒子通量跃变和热层大气密度涨落之间的相关关系, 初步获得强地磁扰动期间, 地球同步轨道(外辐射带外环)均出现了增幅大于三个数量级的高能质子通量(尤其是E>1MeV)强增强现象, 随后热 层大气密度强烈上涨, 表明三者之间是正相关关系. 在时间上地球同步轨道高能质子通量强增强现象先于日均Ap值(地磁活动程度)上涨约一天左右, 而热层大气密度强涨落现象又明显滞后于强地磁扰动事件.   相似文献   

3.
针对超低轨卫星姿态控制差异化需求,开展了基于气动舵机辅助的姿态控制策略研究。完成了超低轨道稀薄大气下卫星气动舵机布局设计与气动特性研究,理论气动力可达10-1 N量级,气动力矩可达10-1 N·m量级。在此基础上,完成了基于气动舵机辅助的姿态控制策略研究。通过仿真验证,在x轴采用动量轮控制、y轴和z轴采用气动舵机辅助控制情况下,可实现优于0.004°的三轴指向精度和优于0.000 7(°)/s的三轴姿态稳定度。所设计气动舵机辅助姿态控制策略对超低轨卫星技术应用与发展具有重要技术价值和工程意义。  相似文献   

4.
在第23至第24太阳活动周的峰年之间,太阳活动谷年具有持续时间长,极低F10.7太阳辐射通量(低至65)和超长期的零太阳黑子数记录等特点,因此是观测和研究在这种特殊背景下热层大气变化的极好机会.尤其是能充分理解和掌握在宁静环境下热层大气密度对弱太阳活动和小地磁扰动的响应特性.本文利用高度650 km以上星载大气密度探测器2007—2009年的连续探测数据进行分析,结果表明,在太阳辐射通量F10.7极低值期间,较高热层大气密度对F10.7的起伏具有更显著的响应变化.当F10.7由70降至65时,日均大气密度会有4~5倍的显著降变,远大于通常大气模式中的降变值.同样在F10.7极低值期间,较高热层大气密度对小地磁扰动也具有显著的响应增变,当日Kp指数之和由23增至30时,较高热层大气密度则会有80%~160%的强增变.  相似文献   

5.
神舟4号大气成分探测的新结果   总被引:2,自引:0,他引:2  
神舟4号(SZ-4)大气成分探测器搭载在SZ-4留轨舱上于2002年12月30日发射入轨,在在轨运行的前3个多月中,正值地球南半球处于夏半球季节,并发生了多次中低强度的地磁扰动事件,SZ-4大气成分探测器测得了轨道舱运行高度上(330-362km附近)大气成分的响应变化和异常现象新结果.探测数据表明,中低强度的地磁扰动事件也能引起热层大气中主要成分O和N2的数密度值增高的响应变化.同样在进入地磁扰动峰期后较高纬度处出现了N2的异常增变和O的异常降变以及大气密度异常扰动的现象,但此期间所出现异常现象的地域与SZ-3和SZ-2大气成分探测器探测结果相反,它仅位于南半球较高纬度地区.  相似文献   

6.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

7.
低轨航天器弹道系数估算及热层大气模型误差分析   总被引:1,自引:0,他引:1  
利用低轨(LEO)航天器在轨期间两行轨道根数(TLEs)数据,结合经验大气密度模型NRLMSISE00,反演计算得到其在轨期间的弹道系数B’,以31年B’的平均值代替弹道系数真值,分别通过标准球形目标卫星对比以及物理参数基本相同的非球形目标卫星对比,对弹道系数真值进行了检验;利用不同外形目标卫星弹道系数在不同太阳活动周内的变化规律,结合太阳和地磁活动变化,估计经验大气密度模型的误差分布. 结果表明,利用反演弹道系数31年的平均值来代替真值,其在理论值的正常误差范围内;大气密度模型误差在210~526km高度范围内存在相同的变化趋势,且模型误差随高度增加而增大;在短周期内B’变化与太阳活动指数F10.7存在反相关性;密度模型不能有效模拟2008年出现的大气密度异常低. 以上结果表明,经验大气密度模型结果需要修正,尤其是在太阳活动峰年和谷年,此外,磁暴期间模型误差的修正对卫星定轨和轨道预报等也具有重要意义.   相似文献   

8.
传统经验大气密度模式预测大气密度存在的较大误差会引起低轨卫星轨道预报误差,对卫星的再入轨、控制计划、碰撞规避及精密定轨造成不利影响.利用天宫一号卫星探测数据,针对大气NRLMSISE-00模式计算的误差特点,在地磁相对平静(Ap ≤ 30)的时间段内,对相近地方时和纬度的模式误差分布进行分析发现,相近地方时和纬度的模式误差分布基本相同.利用二维核回归估计方法,对与预测点相近地方时和纬度的样本误差进行加权,估计预测点处的模式误差,进而按距离预测日期天数的长短,采用加权修正法对模式预测结果进行修正,修正后大气模式误差的均方差(RMS)由14.09%降至4.05%.研究结果表明,该修正方法可以显著提高大气密度预报精度.   相似文献   

9.
利用Colorado大学公开发布的2001-2008年CHAMP和GRACE-A/B三颗卫星加速度计反演的400km高度上的大气密度数据,以大气模式NLRMSISE-00为参考,分析反演数据与模式值的误差特点、产生误差的原因、密度的变化及合理性,并通过卫星轨道两行根数(TLE)的反演结果进行验证,主要结论如下.CHAMP密度值整体稍高于GRACE-A/B,CHAMP密度与模式值之间的误差整体小于GRACE-A/B,2007-2008年 GRACE-A/B与模式的相对误差变化起伏较大.2001年CHAMP与模式存在整体偏差,通过相似空间环境条件下的密度变化比对以及利用TLE的反演结果验证,确定2001年的CHAMP反演密度整体偏低.CHAMP及GRACE-A/B密度变化个例显示,卫星密度值会出现一些个性化特征,使用时应根据需求进行分析处理.研究结果可为合理应用该数据提供参考.   相似文献   

10.
本文测定给出我国首次发射的专用于高层大气探测的两颗气球卫星DQ-1A(1990-81B)和DQ-1B(1990-81C)整个寿命期间的轨道变化,以及利用轨道衰变率,采用适合气球卫星近国轨道反测密度的一种方法,获得500-900km高度范围内太阳峰年期间的高层大气密度及其变化。结果表明,同时发射的两颗面积质量比不同的气球卫星所测定的高层大气密度及其变化非常一致,且明显地显示密度随太阳活动逐日的和27天周期性的变化。本文将密度测定结果与高层大气模型进行了比较和分析。   相似文献   

11.
对2001-2021年SOHO卫星的极紫外辐射测量数据,以及CHAMP,GRACE-A和SWARM-C卫星资料推导出的高分辨率大气密度数据进行统计分析,发现大气密度与极紫外测量值的相关系数大于密度与F10.7指数的相关系数,证实极紫外辐射在不同地方时的影响程度存在显著差异,从而驱动大气密度的周日变化。利用三颗卫星的高度差异揭示极紫外辐射对大气密度的加热效应在350~500 km范围随着高度增加而减弱。统计得到极紫外辐射影响在地方时和纬度上的空间差异:对夏季半球的影响大于冬季半球;在白天,对中纬度地区的影响高于赤道和高纬度地区;在夜间,密度对辐射的斜率在夏季半球高纬度地区存在峰值,在冬季半球中纬度存在谷值,模型DTM2000和NRLMSISE00未能准确刻画。为了改进经验模型,提出基于球谐函数的拟合方法,优于主流模型周日效应采用的表达式,对周日效应建模和修正提供有益借鉴。利用昼夜间能量传输和热层大气经向环流机制探讨了统计结果的物理机制。  相似文献   

12.
利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.   相似文献   

13.
低地球轨道大气环境对诸如科学探测和对地观测卫星的阻尼作用十分明显,而且阻尼随太阳和地磁活动以及昼夜、季节交替变化范围宽。为了保证卫星轨道精度或飞行状态满足任务要求,需要利用推进系统对卫星受到的阻尼进行实时或间歇式补偿以实现轨道或飞行状态的保持。针对轨道高度220~268km的无拖曳飞行和轨道维持应用,基于卫星轨道阻尼变化和有效载荷指标要求分析,研究确定了离子电推进技术指标、推力调节方案、系统组成、推力控制方案和在轨应用策略,并对推力调节方案进行了试验验证。结果表明,与无拖曳飞行卫星任务匹配的离子电推进指标为推力调节范围1~20mN,推力分辨率优于12μN,与对地观测卫星轨道维持任务匹配的指标为推力调节范围1~25mN,推力分辨率100μN。研究提出的针对超低轨道卫星应用需求的高精度推力连续调节离子电推进技术方案,具有工程任务针对性和参考价值。  相似文献   

14.
为实时评估0~100km高度范围内的大气中子全球分布,对宇宙线在地磁场和大气中的传输过程进行了分析.利用蒙特卡罗方法工具包Geant4,预先计算不同能量的粒子在大气层中产生的次级粒子能谱分布,形成大气次级粒子数据库,并与相关模型进行对比,验证了该数据库的有效性和可靠性.以实测或预报的空间环境参数作为输入,计算同步轨道银河宇宙线和太阳质子事件能谱以及100km高度上的地磁垂直截止刚度,最终得到大气层顶上的粒子能谱.通过对大气次级粒子数据库的线性插值,实现1h分辨率的大气中子能谱和辐射剂量全球分布的实时计算.   相似文献   

15.
高精度星光折射间接敏感地平的自主导航方法,目前被国内外广泛关注,由于大气参数变化的不确定性,国内外现用星光折射模型有一定局限性,使得利用星光折射导航定位精度大打折扣.根据大气密度随高度、纬度、季节等变化规律,有效改进现有固定高度(25km)的观测模型,可从整体上提高自主导航精度及可靠性.并通过对大气折射原理、平流层大气数据、大气模型以及影响星光折射观测模型的诸多因素的深入研究,建立了自适应连续高度(20~50km)的星光折射观测模型,同时建立带摄动的系统方程,利用Unscented卡尔曼滤波算法进行了计算机仿真研究,并对仿真结果进行了误差分析.   相似文献   

16.
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001–2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.  相似文献   

17.
选用了神舟2号(SZ-2)大气密度探测器在2001年2—4月间的探测数据,进行日照和阴影区域热层大气密度变化的探讨.结果表明:在高度410km附近,日照和阴影区域大气密度变幅为2—3倍,变幅的大小与地磁活动程度呈负相关关系.日照面大气密度峰区位于星下点地方时1400—1500LT的纬度处,峰值大小与太阳活动程度呈正相关关系.阴影面大气密度谷区位于星下点地方时0400-0500的纬度处,同时在±10°纬度区域中还出现了阴影面峰区.  相似文献   

18.
TIMED卫星探测的全球大气温度分布及其与经验模式的比较   总被引:4,自引:1,他引:3  
徐寄遥  纪巧   《空间科学学报》2006,26(3):177-182
利用TIMED卫星遥感探测的全球温度分布与NRLMSISE-00大气经验模式进行了对比研究.研究表明,在中间层下部以下的高度范围内,经验模式与卫星探测的大气温度分布有很好的一致性.但是比较发现,在中层顶区域,经验模式的计算结果与实测结果有较大的差异.卫星探测表明,在春分季节的低纬地区中层顶区存在稳定的逆温层,但是经验模式不能给出低纬地区春分季节中间层逆温层的分布特征.卫星观测表明在全球范围内中层顶有两个非常不同的高度,一个处于100km附近,另一个处于85km附近,但是经验模式不能给出这一中层顶高度的分布特征.同时在低热层,经验模式计算的温度分布与卫星遥感的探测结果有很大的差异.   相似文献   

19.
开展了基于Gooding算法的400km天基平台光学目标监测的轨道确定研究,当测量误差为3”和6”时,分别对800,1500及36000km轨道高度目标进行初始轨道确定及轨道改进分析.仿真结果表明,利用400km轨道高度平台对800~1500km轨道高度目标进行初定轨,测量数据误差为3”~6”时,4~15min弧段的初定轨精度约在10km量级,1~2min弧段的初定轨精度约在100km量级;15min初定轨弧段轨道改进后误差在100m量级,弧段小于10min时轨道改进误差精度在km量级.利用400km轨道高度平台对36000km轨道高度目标进行初定轨,测量数据误差为3”时,15~20min弧段的初定轨精度约在数十km量级,8~10min弧段的初定轨精度在100km量级;轨道改进后误差在km量级.测量数据误差为6”时,20min弧段初定轨精度在10km量级,8~15min弧段初定轨精度在100km量级,轨道改进后误差精度在10km量级.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号