首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The characteristics of a push-pull parallel resonant converter (PPRC) when operated as a DC-DC transformer were investigated theoretically and experimentally. In the DC-DC transformer region, the voltage transfer ratio of the PPRC was found to be practically constant and independent of the input voltage and load. In this mode, all the switching elements operate in the zero voltage switching (ZVS) condition. Another important feature of the proposed DC-DC transformer is the ability to drive it by an arbitrary switching frequency, provided that the latter is lower than the self-oscillating frequency. This permits the synchronization of the converter to a master clock. The analytical expressions for voltage and current stresses, as well as the other key parameters derived, are applied to develop design guidelines for the DC-DC transformer. The proposed topology was tested experimentally on a 100-W unit which was run in the 200-kHz frequency region  相似文献   

2.
A novel topology, current-fed multiresonant dc-dc converter (CF-MRC) was studied theoretically and experimentally. The new topology differs from previously described current-fed push-pull parallel-resonant topologies in the fact that the output is coupled to the current of the resonant inductor and in the addition of a second capacitor across the transformer. The main features of the proposed converter are an inherent protection against a short and open circuit at the output, a high voltage gain and zero voltage switching (ZVS) over a large range of output voltage. These characteristics make it a viable choice for applications, such as a high voltage capacitor charger, that require controllable current sourcing over a wide output voltage swing.  相似文献   

3.
A high-frequency (HF) link parallel resonant DC/DC converter operating in the lagging power factor mode with the resonating capacitor on the secondary side of the HF transformer is analyzed using a state-space approach. Closed-form solutions (except for the duration of diode conduction) are obtained for steady-state conditions, and design curves are obtained. A method of obtaining optimum operating point under certain constraints is developed and is used as the basis of a simple design procedure. A theoretical study comparing the performance of three MOSFET-based 1-kW converters with different transformer turn ratios under load changes from rated-load to 10% load is carried out. Experimental results obtained with these converters with different transformer turn ratios are also presented  相似文献   

4.
When a parallel resonant tank is excited by a bipolar current pulse train a sinusoidal voltage develops across the tank whose amplitude depends on the duty cycle of the pulse train. An isolated secondary can be derived by applying the tank voltage to an isolation transformer whose magnetizing inductance acts as the resonant inductor of the tank circuit. A dc output voltage is obtained after rectification and filtering of the sinusoidal secondary voltage and regulation is achieved by controlling the duty cycle of the pulse train. The sinusoidal nature of the voltage across the isolation transformer alleviates some of the noise problem associated with parasitic capacitances of an isolation transformer when operated with square voltage waveform. In this work the dc and small-signal analysis of the converter is given and an equivalent small-signal circuit model is derived. Experimental results which confirm the validity of the model are presented.  相似文献   

5.
It is shown that the common series resonant power converter is subject to a low frequency oscillation that can lead to the loss of cyclic stability. This oscillation is caused by a low frequency resonant circuit formed by the normal L and C components in series with the magnetizing inductance of the output transformer. Three methods for eliminating this oscillation are presented and analyzed. One of these methods requires a change in the circuit topology during the resonance cycle. This requires a new set of steady state equations which are derived and presented in a normalized form. Experimental results are included which demonstrate the nature of the low frequency oscillation before cyclic stability is lost.  相似文献   

6.
A resonant switch-mode power supply for the microwave electrothermal thruster (MET) is presented in this paper. The converter is operated with soft-switching at high frequency and exhibits a high efficiency. The soft switching technique used in this converter and the current-source inductor at the input minimize the EMI noise. Electric isolation between input and output is achieved with a center-tap transformer, whose magnetizing inductance is used as the resonant inductance of its resonant tank. The resulting high power density and increased reliability of the converter make it very suitable for aerospace applications. Simulation and experimental results of a 28 V/4.5 kV example are also presented  相似文献   

7.
Results of a theoretical and experimental investigation of a capacitive-loaded push-pull parallel-resonant DC-DC converter (CL-PPRC) are presented and discussed. The push-pull parallel-resonant converter (PPRC) is driven by a lower-than-resonance frequency and the secondary voltage is rectified and smoothed by a capacitive filter. The CL-PPRC is shown to operate in the zero voltage switching (ZVS) mode with a boost-like DC transfer ratio that is approximately linear with the period of the switching frequency. Experimental results of a 180 W, high output voltage (1.8 KV) prototype are found to be in good agreement with the analysis, models, and simulation results presented. The basic characteristic of ZVS, the fact that the resonant current is passing through the switches only during a fraction of the period, the high-voltage transfer ratio, and the inherent input/output (I/O) isolation, make the proposed topology a viable design alternative in avionic and aerospace applications  相似文献   

8.
A frequency-domain steady-state analysis is given for a series-parallel resonant converter (SPRC) operating in the continuous conduction mode (CCM) using Fourier series techniques. Equations for performance parameters are derived under steady-state conditions to provide simple design tools. The topology of the SPRC combines the advantageous properties of both the series resonant converter (SRC) and the parallel resonant converter (PRC). The key results of the work are: a novel half-wave rectifier SPRC, conditions for obtaining high part-load efficiency; and several boundary frequencies and limiting conditions such as the capacitive/inductive load boundary and open-circuit and short-circuit cases. Experimental results measured for an 80-W converter above the resonance at different load resistances and input voltages show excellent agreement with the theoretical performance predicted by the equations  相似文献   

9.
A novel high-frequency transformer linked full-bridge type soft-switching phase-shift pulsewidth modulated (PWM) controlled dc-dc power converter is presented, which can be used as a power conditioner for small-scale photovoltaic and fuel cell power generation systems as well as isolated boost dc-dc power converter for automotive ac power supply. In these applications with low-voltage large-current sources, the full-bridge circuit is the most attractive topology due to the possibility of using low-voltage high-performance metal-oxide-semiconductor field-effect transistor (MOSFET) and achieving high efficiency of the dc-dc power converter. A tapped-inductor filter including the freewheeling diode is newly implemented in the output stage of the full-bridge phase-shift PWM dc-dc converter to achieve soft-switching operation for the wide load variation range. Moreover, in the proposed converter circuit, the circulating current is effectively minimized without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching dc-dc power converter was verified in laboratory level experiment with 1 kW 100 kHz breadboard setup using power MOSFETs. Actual efficiency of 94-97% was obtained for the wide duty cycle and load variation ranges.  相似文献   

10.
LC并联谐振电路在电子线路中被广泛应用,但是在实际教学中往往存在一个误区,即认为谐振发生时的谐振电阻为最大值,端电压也为最大值。从理论推导出发,借助虚拟实验平台MULTISIM进行仿真,从而论证了实际LC并联谐振发生时谐振电阻并非最大值,端电压也非最大值这一结论。  相似文献   

11.
In a recent paper by C.Q. Lee et al. (ibid., vol.25, no.6, p. 844-7, Nov. 1989), the authors analyzed a DC-DC converter that they termed the LLC-type PRC (parallel resonant converter). Its resonant network contains three active components-two inductances and a parallel capacitance-and as a consequence the converter might be expected to have third-order dynamics. But Lee et al. employed a matrix transformation to show that the behavior of the circuit may be represented as a state-plane trajectory, as for a second-order circuit. The purpose of this contribution is to show that the converter has a zero-frequency eigenvalue, associated with undesirable circulating DC. The second-order dynamics exhibited by the third-order converter are explained by an application of Thevenin's theorem. Some aerospace applications of the LLC-type parallel resonant converter (PRC) are discussed. In their reply, the authors show that the circulating direct current does not exist in the practical converter circuit  相似文献   

12.
The analysis of resonant converters including the capacitance of the switches is presented. New dc characteristics are obtained for the series, parallel, and series-parallel resonant converters (SPRC). The operating regions where the converters operate with zero-voltage switching (ZVS) are determined as a function of the switch capacitance. The more pronounced effect can be seen in the series resonant converter (SRC), while the parallel resonant converter (PRC) is the most insensitive. The results of the analysis have been verified on an experimental prototype  相似文献   

13.
14.
This paper presents a comprehensive study of a full bridge (FB) zero-current switched (ZCS) PWM converter which is suitable for high-voltage and high-power DC application that achieves ZCS for all active switches, and zero-voltage-switched (ZVS) operation for all diodes on the high voltage side. The given converter utilizes component parasitic parameters, particularly for the high-voltage transformer, and employs fixed-frequency phase-shift control to implement soft-switching commutations. Detailed steady state analysis of the converter power stage is presented for the first time and the major features of the converter's power stage are discussed. Small-signal characteristics are also presented and accompanied by a discussion of the controller design and implementation. A design example is also presented based on the steady state analysis and is validated by simulation. Theoretical and simulated results are in good agreement  相似文献   

15.
A novel active snubber soft switching method is proposed. The unique location of the resonant inductor and capacitor ensures low current and voltage stresses in the converter. An analytical study of a boost dc-dc converter with the proposed active snubber method is presented in detail to illustrate its operation principles and design considerations. By simple modification, this soft switching method is also suitable for ac-dc boost topology, especially for high power-factor-correction (PFC) universal interface applications. A 500 W prototype system has been made to simulatively and experimentally verify the performance of the soft switching.  相似文献   

16.
For a given output voltage and power, the peak resonant capacitor voltage and peak inductor and switch currents of the series resonant converter depend strongly on the choice of transformer turns ratio and of tank inductance and capacitance. In this paper the particular component values which result in the smallest component stresses are determined, and a simple design strategy is developed. The procedure is illustrated for an off-line 200 W, 5 V application, and it is shown that an incorrect choice of component values can result in significantly higher component stresses than are necessary.  相似文献   

17.
The design concept for the traveling wave tube amplifier converter for possible use in the Thermoelectric Outer Planet Spacecraft (TOPS) is presented. An unusual combination of semiconductors and magnetics were utilized to achieve very stable voltage regulation on a number of separate outputs to satisfy the requirements of a high-power traveling wave tube (TWT), and at the same time operate at an efficiency of better than 90 percent from a 30-volt source. The circuitry consists of an output filter, an auxiliary Jensen oscillator driving a high-reactance transformer to provide current limiting to the heater, a variable time delay, a main Jensen oscillator driving the power transformer with a maximum step-up ratio of 120 to 1, and series transistorized post regulators to provide precise voltage adjustment and low output impedance. This paper discusses the design of the high-reactance transformer and the high step-up ratio transformer, as well as the high-voltage series regulators that are limited in range and operate at the top of the unregulated output voltage. Test data is presented, and details of current transients caused by charging the filter circuits, input current ripple, and output voltage ripples are considered. The circuit provides better than 0.5 percent regulation against load change, input voltage change, and over-operating temperature range of from -20 to + 80°C, with output ripple voltage of less than 2 volts peak-to-peak on top of the 3600-Vdc output. The measured efficiency was typically 87 percent. and recommendations are included to improve this to in excess of 90 percent.  相似文献   

18.
Many future satellite configurations will require the transfer of signals and power across rotating interfaces. Satellite systems are particularly cost effective for both commercial and military communications applications if their useful lifetime can be demonstrated to be greater than five years. The rotary transformer has the desireable characteristics of high reliability and low noise which qualify it as a potential replacement for slip rings. This paper describes the development of a rotary transformer for typical spacecraft applications. The transformer is built in modular sections, each capable of transferring 500 watts across a gap at efficiencies greater than 88 percent, dc to dc. The design effort included a study of pertinent electrical characteristics required for typical spacecraft configurations, electrical design and analyses of the overall dc-dc converter, mechanical design of the transformer cores and their assembly, and a study of transformer core and winding characteristics. Breadboard test results have demonstrated the desired level of efficiency, satisfactory operation over temperature, and satisfactory electrical characteristics.  相似文献   

19.
A new ac/dc 3-/spl phi/ single-stage converter is proposed integrating a 3-/spl phi/ discontinuous current mode (DCM) boost with a dc/dc fixed frequency series resonant converter (SRC). This converter has the following features: natural power factor correction, soft switching, high-frequency (HF) transformer isolation with the series resonant tank operating in above resonance mode, etc. A new complementary gating control scheme is used for simultaneous control of boost converter and the SRC. Modes of operation are presented and analyzed. Based on the analysis, design curves are obtained. An optimum design is given and a design example is presented. Results obtained from SPICE simulation for the designed converter are given to verify the performance of the proposed converter for varying load as well as line voltage. Experimental results obtained from a laboratory prototype converter are presented to verify the theory.  相似文献   

20.
The various types of converter are described, and the history of resonant power supplies is briefly sketched. The differences between pulse-width-modulated (PWM) switch mode power supplies and resonant power supplies are discussed. Single-switch, multiple-switch, and series and parallel resonant converters are examined. The control of resonant converters is addressed. Hardware is briefly considered  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号