首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
《Acta Astronautica》2001,48(5-12):681-691
The considerable surge in satellite constellations has brought to the fore the imperative need for an efficient constellation design and management plan. To address this emerging need, GMV has studied and tested algorithms for the analysis of the key phases in constellation development. These algorithms provide complete analysis capabilities and outline optimal strategies to deal with the following issues of the constellation life cycle:
  • •Constellation orbital design
  • •Constellation performance evaluation
  • •Launch strategy and constellation set-up
  • •Constellation replacement and spare strategy
  • •Constellation long-term evolution and end-of-life policy.
This paper presents a comprehensive overview of the algorithms developed to plan and handle a generic constellation. The main effort has been devoted to define a general approach to the problem, so as to allow the characterization of a wide range of possible mission requirements and constraints. A representative Earth observation constellation for fire detection and monitoring (FUEGO) has been considered to assess the effectiveness and the commercial viability of the algorithms and the strategies implemented.  相似文献   

2.
《Acta Astronautica》1999,44(2-4):187-192
The Advanced Deep Space System Development Program is managed by the Jet Propulsion Laboratory for NASA and is also called X2000. X2000 is organized to create advanced flight and ground systems for the exploration of the outer planets and beyond; it has been created to develop the engineering elements of flight and ground systems. Payloads will be developed by another team. Each X2000 delivery gets its requirements from a set of planned missions, or “mission customers”.The X2000 First Delivery Project supports missions to the Sun (to 4 solar radii), Europa (looking for a liquid ocean), Mars (in support of several Mars missions including a sample return), a comet (including a sample return), and Pluto followed by a trip into the Kuiper belt. This set of missions leads to some outstanding requirements:
  • 1.1. Long-life (10–12 years)
  • 2.2. Total Ionizing Dose of 4 Mrad (for a Europa Orbiter)
  • 3.3. Average power consumption less than or equal to 150 Watts
  • 4.4. Autonomous operations that result in an extreme reduction in operations costs
This paper describes the X2000 first delivery and its technologies following a brief overview of the program.  相似文献   

3.
《Acta Astronautica》2010,66(11-12):1689-1697
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
  • •new mission trajectories and concepts;
  • •operational command and control considerations;
  • •expected science, operational, resource utilization, and impact mitigation returns; and
  • •continued exploration momentum and future Mars exploration benefits.
  相似文献   

4.
Building upon the important experience acquired with the development of the International Space Station, the major spacefaring countries are working within the International Space Exploration Coordination Group (ISECG) at the definition of a coordinated framework for expanding the human presence beyond the Low Earth Orbit, the Global Exploration Roadmap (GER). The GER defines a long-range strategy for global exploration and include three major elements.
  • •Common goals of ISECG participating agencies for space exploration.
  • •Notional mission scenarios which are technically feasible and programmatically implementable. Two mission scenarios were defined in the 1st iteration of the GER: the “Asteroid Next” and the “Moon Next” mission scenarios.
  • •Identification of near-term opportunities for coordination and cooperation related to e.g. the development of technologies, the implementation of robotic missions to destination of interest for closing strategic knowledge gaps which need to be addressed prior to human missions as well as the utilization of ISS for demonstration of exploration enabling capabilities.
In 2009 two studies have been awarded by ESA to Industrial Teams led by Thales Alenia Space—Italy and by Astrium—Germany to define, analyze and assess optional European scenarios for future human spaceflight and exploration activities, and to derive the required capabilities for the investigated timeframe until the year 2033. Work on the European scenarios has been aligned with and informed by the international work on the GER.A conceptual design of different Building Block Elements, representing critical contributions to international Design Reference Missions (DRM's) included in the ISECG GER, has been performed and analyzed with respect to programmatic risks, budgets and required technologies. Key driving requirements for the analyzed Building Block elements have been derived from the international DRM's included in the GER.The interim outcomes of the human exploration scenario study will be presented, identifying opportunities for European Contributions to an international exploration undertaking.  相似文献   

5.
In a recent paper (Maccone, 2011 [15]) and in a recent book (Maccone, 2012 [17]), this author proposed a new mathematical model capable of merging SETI and Darwinian Evolution into a single mathematical scheme. This model is based on exponentials and lognormal probability distributions, called “b-lognormals” if they start at any positive time b (“birth”) larger than zero. Indeed:
  • 1.Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose, as it happened on Earth.
  • 2.In 2008 (Maccone, 2008 [9]) this author firstly provided a statistical generalization of the Drake equation where the number N of communicating ET civilizations in the Galaxy was shown to follow the lognormal probability distribution. This fact is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution if the number of factors is increased at will, i.e. it approaches infinity.
  • 3.Also, in Maccone (2011 [15]), it was shown that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of b-lognormal distributions constrained between the time axis and the exponential growth curve. This was a brand-new result. And one more new and far-reaching idea was to define Darwinian Evolution as a particular realization of a stochastic process called Geometric Brownian Motion (GBM) having the above exponential as its own mean value curve.
  • 4.The b-lognormals may be also be interpreted as the lifespan of any living being, let it be a cell, or an animal, a plant, a human, or even the historic lifetime of any civilization. In Maccone, (2012 [17, Chapters 6, 7, 8 and 11]), as well as in the present paper, we give important exact equations yielding the b-lognormal when its birth time, senility-time (descending inflexion point) and death time (where the tangent at senility intercepts the time axis) are known. These also are brand-new results. In particular, the σ=1 b-lognormals are shown to be related to the golden ratio, so famous in the arts and in architecture, and these special b-lognormals we call “golden b-lognormals”.
  • 5.Applying this new mathematical apparatus to Human History leads to the discovery of the exponential trend of progress between Ancient Greece and the current USA Empire as the envelope of the b-lognormals of all Western Civilizations over a period of 2500 years.
  • 6.We then invoke Shannon's Information Theory. The entropy of the obtained b-lognormals turns out to be the index of “development level” reached by each historic civilization. As a consequence, we get a numerical estimate of the entropy difference (i.e. the difference in the evolution levels) between any two civilizations. In particular, this was the case when Spaniards first met with Aztecs in 1519, and we find the relevant entropy difference between Spaniards an Aztecs to be 3.84 bits/individual over a period of about 50 centuries of technological difference. In a similar calculation, the entropy difference between the first living organism on Earth (RNA?) and Humans turns out to equal 25.57 bits/individual over a period of 3.5 billion years of Darwinian Evolution.
  • 7.Finally, we extrapolate our exponentials into the future, which is of course arbitrary, but is the best Humans can do before they get in touch with any alien civilization. The results are appalling: the entropy difference between aliens 1 million years more advanced than Humans is of the order of 1000 bits/individual, while 10,000 bits/individual would be requested to any Civilization wishing to colonize the whole Galaxy (Fermi Paradox).
  • 8.In conclusion, we have derived a mathematical model capable of estimating how much more advanced than humans an alien civilization will be when SETI succeeds.
  相似文献   

6.
7.
8.
9.
This paper presents some approaches to the development of advanced detectors and to miniaturized instrument design which are pursued in the Institute of Space Sensor Technology of DLR (the German Aerospace Research Establishment). The instrument design approach is demonstrated for a low-weight (3 kg) dual camera system with narrow-angle in-track stereo and wide-angle multispectral features. Each camera has its own signal processor and 0,5 G Bit mass memory. The activities for advanced detector development are concentrated on two different kinds of detectors and instrumentations: infrared detector arrays and instruments at wavelengths out to about 240 μm, and superheterodyne receivers in the submillimeter and far-infrared spectral ranges.  相似文献   

10.
11.
12.
We present the characteristics of short (duration less than 1 min) increases of the counting rate of electrons with energies >0.08 MeV observed in low-latitude (L < 2.0) regions of near-Earth space in the course of the GRIF experiment on the Spektr module of the Mir orbital station. The measurements were carried out using a set of instruments including X-ray and gamma-ray spectrometers, as well as detectors of electrons, protons, and nuclei with large and small geometrical factors, which allowed one to detect the fluxes of charged particles both in the region of the Earth’s radiation belts and in regions close to the geomagnetic equator. As a result of more than 1.5 years of observation, it is demonstrated that short increases in the intensity of electrons of subrelativistic energies are detected not only in the regions of the near-Earth space known as “precipitation zones” (1.7 < L < 2.5), but in high-latitude regions (up to the geomagnetic equator, L < 1.1) as well. Two types of increases of the electron counting rate are found: either fairly regular increases repeating on successive orbits or increases local in time. The latter type of increases can be caused by a short enhancement of electron flux on a given drift shell. The results of our measurements have shown that the duration of the detected increases in intensity can be rather short, as little as 20–30 s. Therefore, in the case of large amplitudes, such increases of the counting rate of electrons can imitate astrophysical events of the type of cosmic gamma-ray bursts in the detectors of hard X-ray and gamma radiation.  相似文献   

13.
The program of physical studies on the Vernov satellite launched on July 8, 2014 into a polar (640 × 830 km) solar-synchronous orbit with an inclination of 98.4° is presented. We described the complex of scientific equipment on this satellite in detail, including multidirectional gamma-ray detectors, electron spectrometers, red and ultra-violet detectors, and wave probes. The experiment on the Vernov satellite is mainly aimed at a comprehensive study of the processes of generation of transient phenomena in the optical and gamma-ray ranges in the Earth’s atmosphere (such as high-altitude breakdown on runaway relativistic electrons), the study of the action on the atmosphere of electrons precipitated from the radiation belts, and low- and high-frequency electromagnetic waves of both space and atmospheric origin.  相似文献   

14.
15.
Chandrayaan-1 is the first Indian planetary exploration mission that will perform remote sensing observation of the Moon to further our understanding about its origin and evolution. Hyper-spectral studies in the 0.4– region using three different imaging spectrometers, coupled with a low energy X-ray spectrometer, a sub-keV atom analyzer, a 3D terrain mapping camera and a laser ranging instrument will provide data on mineralogical and chemical composition and topography of the lunar surface at high spatial resolution. A low energy gamma ray spectrometer and a miniature imaging radar will investigate volatile transport on lunar surface and possible presence of water ice in the polar region. A radiation dose monitor will provide an estimation of energetic particle flux en route to the Moon as well as in lunar orbit. An impact probe carrying a mass spectrometer will also be a part of the spacecraft. The 1 ton class spacecraft will be launched by using a variant of flight proven indigenous Polar Satellite Launch Vehicle (PSLV-XL). The spacecraft will be finally placed in a 100 km circular polar orbit around the Moon with a planned mission life of two years.  相似文献   

16.
17.
ABSTRACT

In three experiments, after exploring a virtual environment (VE), adult participants made spatial judgments about the location of target objects that were higher and lower than their perceived test location within the VE. In Experiment 1, the locations of the target objects were inferred from verbal instructions. The main results were a tendency to judge objects as closer to the horizontal plane than their true locations, and more efficient downward than upward judgments. Both effects generally accord with findings reported by Wilson et al. (2004a Wilson, P. N., Foreman, N., Stanton, D. and Duffy, H. 2004a. Memory for targets in a multilevel simulated environment: Evidence for vertical asymmetry in spatial memory. Memory & Cognition, 32: 283297. [Crossref] [Google Scholar], 2004b Wilson, P. N., Foreman, N., Stanton, D. and Duffy, H. 2004b. Memory for targets in a multi-level simulated-environment: A comparison between able-bodied and physically disabled children. British Journal of Psychology, 95: 325338.  [Google Scholar]). In Experiments 2 and 3, which were closely modeled on the design of the Wilson et al. studies, regression to the horizontal plane was noted but no downward bias was observed. A misperception in the viewing height between the floors and ceilings of the virtual rooms was apparent in both experiments. The results from the present study together with earlier investigations suggest different hierarchical encoding of between-axis and within-axis information.  相似文献   

18.
19.
20.
Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and recurring costs, because they help limit the number of prototypes and tests.The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions.Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements.Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants.In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion:
• Computer-aided method for the preliminary grain design
• Advanced models for SRM operating and performance predictions

References

A Davenas, D Boury, M Calabro, B D'Andrea and A Mc Donald, Solid Propulsion for Space Applications: A Roadmap, 51st IAF Congress, Rio de Janeiro, Brazil (2000).
H Austruy, M Biagioni and Y Pelipenko, Improvement in Propellant and Process for Ariane 5 Boosters (1998) AIAA 98-35588.
Y Longevialle, M Golfier, H Graindorge and G Jacob, The use of new molecules in high performances energetic materials, NDIA Insensible munitions and energetic materials technology symposium, Tampa, Florida (1999).
A.T. Nielsen, J. Org. Chem. 55 (1990), pp. 1459–1466 US Patent 5 693 794, 30/09/1998. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (58)
Bescond P, Graindorge H, Mace H, EP 913374, 6/05/1999.
G Jacob, G Lacroix and V Destombes, Identification and analysis of impurities of HNIW, 31st Annual Conference of ICT (2000).
B D'Andrea, F Lillo, A Faure and C Perut, A New Generation of Solid Propellants for Space Launchers, 50th IAF Congress, Amsterdam, The Netherlands (1999).
D.W. Doll and G.K. Lund, Magnesium neutralized clean propellant (1991) AIAA 91-2560.
C. Beckman, Clean propellants for space launch boosters, Propulsion and Energetic Panel, 84th Symposium held in Aalesund, Norway (2921994).
B. D'Andrea, B. Lillo, A. Volpi, C. Zanotti and P. Giuliani, Advanced solid propellant composition for low environmental impact and negligible erosive effect, ISTS (1998) 98-a-1-12.
J.C Chastenet and A Mobuchon, Prediction of Air Bag Performance, 5 ISCP, Stresa, Italy (2000).
J. Thépénier, D. Ribereau and E. Giraud, Grain Design for thrust trace shaping in segmented solids for the SRBs IAF-99-S.2.09, 50th IAF Congress, Amsterdam, The Netherlands (1999).
J. Thépénier, D. Ribereau and E. Giraud, Application of advanced computational softwares in propellant grain analysis : a major contribution to future SRM development for space application IAF-97-S.4.06, 48th IAF Congress, Torino, Italy (97).
A. Davenas and J. Thépénier, Recent Progress in the prediction and analysis of the operation of Solid Rocket Motors IAF-98-S2.06, 49th IAF Congress, Melbourne, Australia (1998).
D. Ribéreau, P. Le Breton and E. Giraud, SRM 3D surface burnback computation using mixes stratification deduced from 3D grain filling simulation, AIAA 99-2802, 35th AIAA JPC Conference, Los Angeles, USA (1999).
Mary. Y; “Simulation de coulée gravitaire, validation du code MONTREAL.”, DEA mechanics report, 1995.
P. Le Breton, D. Ribéreau, F. Godfroy, R. Abgrall and S. Augoula, SRM Performance Analysis by coupling bidimensional surface burnback and Pressure field computations AIAA 98-3968, 34th AIAA JPC Conference, Cleveland, USA (1998).
P. Durand, B. Vieille, H. Lambare, P. Vuillermoz, G. Bourit and P. Steinfeld, A three dimensional CFD numerical Code dedicated to space propulsive flows AIAA 00-3864, 36th AIAA JPC Conference, Huntsville, USA (2000).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号