首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
为了研究低温推进剂贮箱的压力控制特性和热力学排气系统的运行特性,建立了耦合贮箱内流体流动相变过程与热力学排气系统(TVS)的数学模型,对TVS系统运行后贮箱的压力和温度变化进行了仿真计算。在以液氮为贮存工质的低温流体高效贮存平台上,进行了仿真模型的验证。分析了不同液体过冷度对低温贮箱温度和压力控制特性的影响。研究发现,在相同的在轨贮存周期内,对于饱和状态的液氢和液氧,TVS只有在排气模式下才能实现低温贮箱的压力控制,而对于过冷状态的液氢和液氧,TVS只需进行混合模式运行便可实现低温贮箱压力控制,且TVS混合运行时间随液体过冷度的增加而减少,16 K液氢时TVS的运行时间(546 s)相比于20 K液氢(663 s)减少了17.6%,78 K液氧时TVS的运行时间(2 760 s)相比于90 K液氧(16 469 s)减少了83.2%。过冷液体与气枕的混合可以实现低温流体在轨贮存过程中的零排放。  相似文献   

2.
低温液体推进剂增压分析与计算   总被引:1,自引:0,他引:1  
运载火箭低温推进剂贮箱的增压问题极为复杂,其传热问题的研究分析又受到很大的限制.为此,根据我国上面级低温液体推进剂火箭的要求及其具体条件,推导和制定了整个飞行过程的贮箱增压计算方法、主动段—滑行段—主动段的计算公式和必需的初始数据.计算结果与国外同类试验结果规律相一致,与某型号低温推进剂火箭飞行结果相接近,证明该计算方法是可行的.  相似文献   

3.
滑行段低温推进剂流动及换热特性对气枕压力的影响研究   总被引:1,自引:0,他引:1  
运载火箭在飞行过程中需要进行姿态调整以满足入轨要求,贮箱内推进剂在外界干扰力的作用下将发生晃动,由此引入了诸如气液接触面积、蒸发、冷凝过程及推进剂流动变化等不确定影响因素。实际飞行过程尤其是进入滑行段的初始推进剂晃动对贮箱内气枕压力及推进剂流动行为具有重要影响。在调研国内外运载火箭末级飞行过程中低温贮箱压力及推进剂流动特性的基础上,建立仿真模型,采用流体体积函数方法(VOF)分析滑行段推进剂流动特性变化对贮箱气枕压力的影响。  相似文献   

4.
运载火箭低温推进剂热管理技术及应用进展分析   总被引:1,自引:0,他引:1       下载免费PDF全文
运载火箭低温推进剂与外界环境的传热是造成汽化的主要原因。为长期贮存和使用低温推进剂,必须采用综合的热管理技术。首先介绍国内外提出的被动热防护技术和主动制冷技术。前者的主要目的是降低贮箱与外界环境的热量交换强度;后者是通过对贮箱内的热量进行转移,以实现低温推进剂的无损贮存,但只适合已具有良好被动热防护的贮箱。其次,对国外典型低温推进剂实验应用系统进行分析,并初步提出多功能液氢实验平台方案设想,方案中通过CZ-3A号搭载多功能液氢实验平台用于验证空间环境下低温推进剂的综合应用技术。通过对低温推进剂热管理技术的调研和论证,为我国低温推进剂在空间环境下的长期在轨使用提供技术参考。  相似文献   

5.
近年来,低温推进剂在火箭推进领域得到了广泛应用,针对液氧、液氢以及液甲烷等低温推进剂的研究也得到了深入开展。然而,有关低温推进剂热力学性能的研究虽有开展,但各种推进剂性能的特点和差异缺乏研究,对低温推进剂的热力学性能缺乏综合性分析研究和系统认识。统计了1960年以来火箭推进剂的使用以及按照火箭级应用分布情况,对低温推进剂在火箭推进领域的应用与发展进行系统性综述。从低温推进剂的基础热物理性质出发,面向航天推进应用,对不同低温推进剂的动力特性、传输特性、贮存特性以及致密化特性4个方面进行综合评估。结果表明:液氢推力特性最好,氢氧发动机理论比冲可达457 s。相同管路和工况条件下,液氢流动阻力最小,液氧流动温升最小,液甲烷流动阻力和温升特性表现居中。以管长为10 m、管内径为0.1 m的加注管路为例,液氢流动压降小于5 kPa,液氧流动温升小于0.5 K。在地面停放过程中液氧和液甲烷温升小,贮箱增压慢,同时液甲烷热分层现象较弱。对于高5 m、直径3 m的圆柱形贮箱来说,当外界热流密度为50 W/m2时,液氢温升可达4.83 K,液氧仅为1.93 K;液氧贮存周期可达36...  相似文献   

6.
氢氧推进剂在轨加注若干关键问题研究进展   总被引:1,自引:0,他引:1  
为了实现深空探测和大型空间站的建设,有必要对氢氧推进剂的在轨加注技术进行研究。通过文献调研和对比,重点分析氢氧推进剂在轨加注遇到的若干热力学和流体力学问题。首先介绍了可以用于氢氧贮箱蒸发量控制的被动热防护技术,目的是实现推进剂的长期在轨贮存。其次,对9种常用的常规推进剂在轨测量技术进行比较,得出适用于氢氧贮箱内剩余推进剂的测量方法。最后,针对在轨低温推进剂的气液分离问题,分析了正推法和表面张力贮箱在氢氧贮箱气液分离中的适用性。通过对氢氧推进剂在轨加注关键问题的调研和论证,为我国氢氧推进剂在空间环境下的长期在轨使用和再加注提供技术参考。  相似文献   

7.
用于空间在轨运行的氢氧内燃机是低温末级火箭流体集成系统(IVF)中的关键组件。分析了国内外空间在轨氢氧内燃机的发展现状,通过Chemkin燃烧软件仿真分析获得了氢氧内燃机设计关键参数。开展了氢氧内燃机地面点火验证试验。结果表明:氢氧内燃机具有较好的点火启动性能,通过降低混合比和压缩比能够将氢氧内燃机缸内的温度和压力控制在合理范围内。氢氧内燃机在稳定的转速下工作,所消耗的氢气、氧气质量流量小于低温贮箱的平均蒸发量。  相似文献   

8.
双组元统一推进系统优化改进技术进展   总被引:2,自引:0,他引:2  
袁磊  王申  刘涛  连仁志 《火箭推进》2014,40(6):8-12
不断提高推进剂在轨管理效率,是应用卫星对推进系统的基本要求,也是推进系统的重要发展方向。推进剂剩余量在轨高精度测量和并联贮箱均衡排放主动控制,是提高推进剂在轨管理效率的重要技术手段。针对我国SAST-5000卫星平台双组元统一推进系统,开展了气体注入压力激励方法的关键技术攻关,并取得重要进展。研究结果表明:改良型气体注入压力激励法的推进剂剩余量在轨测量精度达到-0.68%-0.66%,并联贮箱均衡排放控制措施将被动调节的不均衡度控制在优于1.13%,主动纠偏措施还可进一步提高并联贮箱排放推进剂的同步性。  相似文献   

9.
火箭发动机地面试验中,低温推进剂贮箱增压过程的传热、传质以及湍流流动过程十分复杂。贮箱增压系统具有非线性、时间滞后、参数变化不确定等特点,对增压系统难以建立精确的数学模型。因此,以低温推进剂贮箱内压力稳定为目的,提出了采用多路、不同直径管道增压的模糊控制方案;应用模糊控制算法中的最大隶属度法进行解模糊化,制定增压管路的模糊控制表,建立了以压力为控制变量的模糊控制器。分别对预增压过程和保持增压过程的两种工况进行了仿真。仿真结果表明:模糊控制算法能有效提高推进剂贮箱中压力调节的控制精度和响应速度,使得离开贮箱的推进剂压力稳定地满足发动机泵入口的压力和净吸程要求。  相似文献   

10.
在载人月球探测任务中,为准确预测携带大量推进剂航天器的质量特性和在轨寿命以便进行飞行任务规划和控制,需要精确测量低重力条件下航天器推进剂剩余质量。文章对基于气体注入法的航天器贮箱推进剂剩余量测量精度和关键影响因素进行了仿真研究,研究结果表明:随着航天器贮箱中推进剂剩余量的不断减少,气体注入法测量精度不断降低;测量实施过程中贮箱压力值变化幅度越大,测量精度越高;测量精度受测量系统温度传感器精度影响相对较小,受测量系统压力传感器精度影响较大,呈近似线性相关;基于气体注入法的高精度推进剂剩余量测量方法,可通过选用高精度压力传感器和增大测量实施过程中贮箱压力值变化幅度实现。  相似文献   

11.
新一代运载火箭增压技术研究   总被引:6,自引:0,他引:6  
随着新一代运载火箭研制的开展,新型120t级高压补燃液氧煤油发动机将得到广泛的使用,该发动机采用的推进剂贮箱增压系统设计被列为新一代运载火箭研制的重大关键技术之一。在对国内外主要液体运载火箭增压方案进行分析的基础上对120t级液氧煤油发动机的贮箱增压系统进行了研究,提出了液氧贮箱采用压力传感器与电磁阀组合的常温氦气加温增压,煤油贮箱采用压力传感器与电磁阀组合的常温氦气增压方案,并针对液氧贮箱采用常温氦气加温增压的方案开展了理论分析和全尺寸系统级试验研究。理论分析和试验结果表明,该增压方案可行。  相似文献   

12.
30kN上面级液氧甲烷发动机方案   总被引:1,自引:0,他引:1  
上面级是介于运载火箭与航天器之间的相对独立的一级,具备轨道转移能力,可将有效载荷精确送入预定轨道。上面级是提高火箭运载能力和提升任务适应性的有效途径,上面级发动机是实现该目标的关键。长期在轨的高性能上面级,要求主动力具备比冲高、空间可长期贮存和高可靠性等能力。针对此技术需求,对比分析了上面级发动机的系统方案;设计了采用泵压膨胀循环、双涡轮泵串联的30 kN上面级发动机系统方案;重点介绍了推力室、涡轮泵和发动机总装集成等关键组件的研究进展。研究表明:液氧甲烷推进剂非常适用于长期在轨上面级发动机;闭式膨胀循环发动机系统是长期在轨上面级动力系统方案的首选;推力室和涡轮泵等组件的研制结果,初步证明了发动机系统及组件方案的可行性;发动机总装和演示试验方案设计工作,为深入开展发动机系统技术研究打下了良好基础。  相似文献   

13.
低温加注系统是运载火箭发射场地面支持设备的重要组成部分,包括低温介质的储存、运输、供给、控制以及安全等内容。由于低温推进剂本身存在低温沸腾、易挥发的特性,其加注过程十分复杂,为满足新一代运载火箭推进剂精准的加注要求,需要实时准确监测加注过程中贮箱内的液位高度。本文针对火箭地面加注过程的液位信号数据,对其三角波电压和线性波电压的特征进行分析、提取,基于BP(Back Propagation,反向传播)神经网络算法完成对不同加注状态的识别检测,并应用于传感器节数判别,优化了液位计算算法,降低了节数人为干预需求,提高了液位测量准确性。经实验测试验证,该方法可有效识别低温加注状态,识别准确率达到90%以上,用于液位信号处理中可显著提升液位高度计算的准确性。  相似文献   

14.
基于压力变送器及智能仪表的箱压自动控制技术   总被引:1,自引:0,他引:1  
李长敏 《火箭推进》2011,37(1):57-60
目前发动机地面试验过程中的泵入口压力控制主要是通过控制介质贮箱内压力来实现的.介绍了大型液体火箭发动机研制试验中介质贮箱压力自动控制的一种新方法,这种方法集试验过程信号采集、动态工艺参数显示、上下限设定值显示、报警显示输出及自动控制为一体,减小了手动调节箱压继电器的操作误差,使系统的可靠性得到了很大程度的提高.  相似文献   

15.
廖少英 《上海航天》2001,18(1):16-21
根据氦气和氮气在可贮存推进剂中的溶解度与发动机泵入口压力关系,以及对美国上面级火箭“阿金纳”增压系统的分析,计算和研究,对我国可贮存推进剂上面级火箭的发动机泵入口压力要求和增压输送系统进行分析和研究,认为采用氦气增压,我国可贮存推进剂上面级火箭发动机氧化剂泵入口压力要求可以大幅度地降低,较大地提高火箭的运载能力,并提出相应的改进建议。  相似文献   

16.
固液混合火箭发动机研究进展   总被引:1,自引:0,他引:1  
固液火箭发动机因其推进剂能量较高、安全性好、易实现推力调节、可实现多次启停、药柱稳定型好、温度敏感性低、环保性佳和经济性好的特点,十分符合下一代航天平台绿色环保、智能随控、快速响应的发展需求,在探空火箭、亚轨道飞行器、靶标、小型运载火箭、助推器、上面级动力系统、姿轨控动力系统、着陆器和其他许多民用商业航天领域中都具有良好的应用前景。分析了固液火箭发动机的国内外发展现状及发展趋势,对国内外固液火箭发动机相关的典型项目、工程应用和关键技术发展情况进行了回顾和总结,并以此为基础总结固液火箭发动机技术的发展趋势和有待进一步突破的关键技术。  相似文献   

17.
小推力推进系统起动过程的分析   总被引:4,自引:0,他引:4  
本文对小推力推进系统各部件建立了数学模型,并对此系统进行了数值计算。计算结果表明,在燃烧时滞较大时,该系统响应较慢,发动机参数的超调量较大,达到稳态所需的时间较长;轨控发动机与姿控发动机共用同一个供应系统时,姿控发动机受燃烧时滞的影响更大。减小燃烧时滞有利于提高发动机在起动过程的响应能力和稳定性。在起动阶段,高室压推进系统比低室压推进系统响应快,高室压轨控发动机的参数能较快地稳定下来,但其超调量较大;高室压姿控发动机虽然响应快,但其超调量大,达到稳态所需的时间长于低室压姿控发动机。本文所得结论为提高小推力推进系统在起动过程的响应能力提供了参考。  相似文献   

18.
推进剂供应系统增压过程仿真   总被引:3,自引:0,他引:3  
晋晓伟  孙亮  马键  李平 《火箭推进》2009,35(3):30-33,46
在大型液体火箭推进系统中,推进剂供应系统对贮箱压力有着严格的要求,增压系统作为可靠性环节的关键系统,工作过程复杂,需要进行仿真分析和试验验证,以改进设计。应用系统仿真技术,对某推进剂供应系统的增压过程进行了仿真,仿真结果与试验情况基本吻合。仿真结果表明缓冲阀可以有效地抑制增压过程压力振荡。此外,系统增压时间不能低于17s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号