首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet radiation is an important natural physical influence on organism function and ecosystem interactions. The UV radiation fluxes in extraterrestrial environments are substantially different from those experienced on Earth. On Mars, the moon and in Earth orbit they are more biologically detrimental than on Earth. Based on previously presented fluxes and biologically weighted irradiances, this paper considers in more detail measures to mitigate UV radiation damage and methods to modify extraterrestrial UV radiation environments in artificial ecosystems that use natural sunlight. The transmission characteristics of a Martian material that will mimic the terrestrial UV radiation environment are presented. Transmissivity characteristics of other Martian and lunar materials are described. Manufacturing processes for the production of plastics and glass on the lunar and Martian surface are presented with special emphasis on photobiological requirements. Novel UV absorbing configurations are suggested.  相似文献   

2.
The proposed space experiments BOSS (Biofilm Organisms Surfing Space) and BIOMEX (BIOlogy and Mars experiment) will take place on the space exposure facility EXPOSE-R2 on the International Space Station (ISS), which is set to be launched in 2014. In BOSS the hypothesis to be tested is that microorganisms grown as biofilms, hence embedded in self-produced extracellular polymeric substances, are more tolerant to space and Martian conditions compared to their planktonic counterparts. Various microbial biofilms have been developed including those obtained from the cyanobacterium Chroococcidiopsis isolated from hot and cold deserts. The prime objective of BIOMEX is to evaluate to what extent biomolecules are resistant to, and can maintain their stability under, space and Mars-like conditions; therefore a variety of pigments and cell components are under investigation to establish a biosignature data base; e.g. a Raman spectral library to be used for extraterrestrial life biosignatures. The secondary objective of BIOMEX is to investigate the endurance of extremophiles, focusing on their interactions with Lunar and Martian mineral analogues. Ground-based studies are currently being carried out in the framework of EVTs (Experiment Verification Tests) by exposing selected organisms to space and Martian simulations. Results on a desert strain of Chroococcidiopsis obtained from the first set of EVT, e.g. space vacuum, Mars atmosphere, UVC radiation, temperature cycles and extremes, suggested that dried biofilms exhibited an enhanced survival compared to planktonic lifestyle. Moreover the protection provided by a Martian mineral analogue (S-MRS) to the sub-cellular integrities of Chroococcidiopsis against UVC radiation supports the endurance of this cyanobacterium under extraterrestrial conditions and its relevance in the development of life detection strategies.  相似文献   

3.
Radiation Risk Radiometer-Dosimeter E (R3DE) served as a device for measuring ionizing and non-ionizing radiation as well as cosmic radiation reaching biological samples located on the EXPOSE platform EXPOSE-E. The duration of the mission was almost 1.5 years (2008-2009). With four channels, R3DE detected the wavelength ranges of photosynthetically active radiation (PAR, 400-700?nm), UVA (315-400?nm), UVB (280-315?nm), and UVC (<280?nm). In addition, the temperature was recorded. Cosmic ionizing radiation was assessed with a 256-channel spectrometer dosimeter (see separate report in this issue). The light and UV sensors of the device were calibrated with spectral measurement data obtained by the Solar Radiation and Climate Experiment (SORCE) satellite as standard. The data were corrected with respect to the cosine error of the diodes. Measurement frequency was 0.1?Hz. Due to errors in data transmission or temporary termination of EXPOSE power, not all data could be acquired. Radiation was not constant during the mission. At regular intervals of about 2 months, low or almost no radiation was encountered. The radiation dose during the mission was 1823.98 MJ m(-2) for PAR, 269.03 MJ m(-2) for UVA, 45.73 MJ m(-2) for UVB, or 18.28 MJ m(-2) for UVC. Registered sunshine duration during the mission was about 152 days (about 27% of mission time).The surface of EXPOSE was most likely turned away from the Sun for considerably longer. R3DE played a crucial role on EXPOSE-EuTEF (EuTEF, European Technology Exposure Facility), because evaluation of the astrobiology experiments depended on reliability of the data collected by the device. Observed effects in the samples were weighted by radiation doses measured by R3DE.  相似文献   

4.
张璐  徐向华 《宇航学报》2020,41(9):1221-1227
为了对火星表面的热辐射环境进行模拟,以辅助火星探测等任务,建立了火星大气的一维模型和土壤的一维导热模型,并与NASA的一维火星大气辐射程序相结合,得到了一套整体模拟系统。模拟获得了火星地表温度及接收到的可见光、红外辐射热流密度,分析了季节、纬度、尘暴、云层的变化对地表温度和所受太阳辐射造成的影响。模拟结果表明,纬度和季节的变化影响着太阳高度角和日照时长等因素,进而对可见光辐射造成显著影响;尘埃光学厚度的增加会削弱可见光辐射并增强红外辐射,云层光学性质的改变造成的影响与之相似但较小;四者的改变都会对地表的温度及接收到的太阳辐射热流密度造成不同程度的影响。  相似文献   

5.
A source of energy to power metabolism may be a limiting factor in the abundance and spatial distribution of past or extant life on Mars. Although a global average of chemical energy available for microbial metabolism and biomass production on Mars has been estimated previously, issues of how the energy is distributed and which particular environments have the greatest potential to support life remain unresolved. We address these issues using geochemical models to evaluate the amounts of chemical energy available in one potential biological environment, Martian hydrothermal systems. In these models, host rock compositions are based upon the compositions of Martian meteorites, which are reacted at high temperature with one of three groundwater compositions. For each model, the values for Gibbs energy of reactions that are important for terrestrial chemosynthetic organisms and likely representative for putative Martian microbes are calculated. Our results indicate that substantial amounts of chemical energy may be available in these systems, depending most sensitively upon the composition of the host rock. From the standpoint of sources of metabolic energy, it is likely that suitable environments exist to support Martian life.  相似文献   

6.
Mars ecopoiesis is a human controlled process consisting in changes needed for anaerobic life to be established on planet surface. The daily minimum temperature on present day Mars is well below the water freezing point, due to the low thermal inertia of the surface. A simple time-dependent model to evaluate the ground temperature is developed here. It takes into account the incident solar radiation, the greenhouse effect and surface thermal inertia. The model is applied to two modified Martian atmospheres. Increasing surface thermal inertia seems to be necessary for Mars intrinsic ecopoiesis. This can be done either by removing the regolith layer covering the bedrock or by regolith compression. The Northern hemisphere of the terraformed Mars appears to be more hospitable than the Southern hemisphere, because the amplitude of the daily temperature excursion there is lower and the freezing temperature appears at higher latitudes. A regional (and seasonal) terraforming of Mars is suggested.  相似文献   

7.
针对飞行器进入火星大气时气体辐射加热对防热设计带来不确定性,在简述火星探测和气体辐射研究的发展历程的基础上,对火星进入气体辐射加热研究的进展进行综述。首先,针对火星大气环境描述了气体辐射加热的概念和问题由来。其次,重点综述了近年来火星进入气体辐射加热基础模型的数值和试验研究进展,其中包括:热化学非平衡气体动力学、气体辐射特性和辐射传输的计算模型与方法等数值研究;地面测试设备、试验技术和模拟火星大气环境的气体辐射测量与验证等试验研究。再次,综述了流动辐射耦合和后体气体辐射加热等火星进入器设计方面开展的研究。最后,对未来火星进入气体辐射加热研究进行了展望,提出了研究建议。  相似文献   

8.
Quinn R  Zent AP  McKay CP 《Astrobiology》2006,6(4):581-591
Carbonates, predominately MgCO3, have been spectroscopically identified at a level of 2-5% in martian dust. However, in spite of this observation, and a large number of climate studies that suggest 1 to several bars of CO2 should be sequestered in carbonate rocks, no outcrop-scale exposures of carbonate have been detected anywhere on Mars to date. To address one hypothesis for this long-standing puzzle, the effect of ultraviolet (UV) light on the stability of calcium carbonate in a simulated martian atmosphere was experimentally investigated. Using 13C-labeled calcite, we found no experimental evidence of the UV photodecomposition of calcium carbonate in a simulated martian atmosphere. Extrapolating the lower limit of detection of our experimental system to an upper limit of carbonate decomposition on Mars yields a quantum efficiency of 3.5 x 10(-8) molecules/photon over the wavelength interval of 190-390 nm and a maximum UV photodecomposition rate of 1.2 x 10(-13) kg m(-2) s(-1) from a calcite surface. The maximum loss of bulk calcite due to this process would be 2.5 nm year(-1) (Mars year). However, calcite is expected to be thermodynamically stable on the surface of Mars, and potential UV photodecomposition reaction mechanisms indicate that, though calcium carbonate may decompose under vacuum, it would be stable in a CO2 atmosphere. Given the expected stability of carbonate on Mars and our inability to detect carbonate decomposition, we conclude that it is unlikely that the apparent absence of extensive carbonate deposits on the martian surface is due to UV photodecomposition in the current environment.  相似文献   

9.
The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150?h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.  相似文献   

10.
掌握火星土壤的力学参数是保障火星车顺利完成巡视探测的关键。通过对已成功开展的火星巡视探测任务进行汇总,探讨了复杂火星地貌对火星车移动性能的影响,分析了基于地面力学理论的火星土壤力学参数估计方法,包括:基于车轮的火星壤在轨力学参数估计方法和基于轮壤力学模型的力学参数辨识方法。最后,对未来关于地面力学在星壤力学参数评估进行了探讨。  相似文献   

11.
Powell J  Maise G  Paniagua J 《Acta Astronautica》2001,48(5-12):737-765
A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined.  相似文献   

12.
The Martian polar ice caps are regions of substantial scientific interest, being the most dynamic regions of Mars. They are volatile sinks and thus closely linked to Martian climatic conditions. Because of their scale and the precedent set by the past history of polar exploration on Earth, it is likely that an age of polar exploration will emerge on the surface of Mars after the establishment of a capable support structure at lower latitudes. Expeditions might be launched either from a lower latitude base camp or from a human-tended polar base. Based on previously presented expeditionary routes to the Martian poles, in this paper a "spiral in-spiral out" unsupported transpolar assault on the Martian north geographical pole is used as a Reference expedition to propose new types of equipment for the human polar exploration of Mars. Martian polar "ball" tents and "hover" modifications to the Nansen sledge for sledging on CO2-containing water ice substrates under low atmospheric pressures are suggested as elements for the success of these endeavours.Other challenges faced by these expeditions are quantitatively and qualitatively addressed.  相似文献   

13.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.  相似文献   

14.
火星及其环境   总被引:6,自引:3,他引:3  
火星环境类似于地球,而探索其生命存在是重大的科学任务。在火星探测中,对火星及其环境的了解与研究是重要的任务目标,事关探测任务的成功实施。文章对国外火星探测已发布的成果进行收集和整理,其中包含大量的相关数据。这些知识和数据是火星探测任务设计的输入条件,可为我国火星探测计划的制定提供参考依据。  相似文献   

15.
Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.  相似文献   

16.
聂春生  聂亮  杨光  袁野 《宇航学报》2021,42(12):1610-1620
采用火星大气物理化学模型,求解带辐射源项的三维热化学非平衡N S方程,对探路者号火星探测器进入过程中的高温流场和热环境进行了数值模拟,分析了气体辐射与非平衡流场耦合效应对流场和热流的影响。结果表明:1)探路者号火星探测器流场热化学非平衡效应显著,CO 2 气体发生大规模离解,高度低至 28.5 km 仍存在热力学非平衡效应;2)热力学与化学非平衡效应的影响均与表面催化特性相关,完全催化热流要高于完全非催化热流50%以上;3)高温流场中的CO组分会产生较强的气体辐射加热,辐射热流与对流热流的比值为15%~45%,靠近肩部区域比值最大;4)气体辐射对非平衡流场的冷却效应使激波脱体距离减小;与非耦合方法相比,采用耦合方法得到的辐射热流降低约12%~25%。  相似文献   

17.
We present a new European Mars mission proposal to build on the UK-led Beagle2 Mars mission and continue its astrobiology-focussed investigation of Mars. The small surface element to be delivered to the Martian surface--Vanguard--is designed to be carried by a Mars Express-type spacecraft bus to Mars and adopts a similar entry, descent and landing system as Beagle2. The surface element comprises a triad of robotic devices--a lander, a micro-rover of the Sojourner class for surface mobility, and three ground-penetrating moles mounted onto the rover for sub-surface penetration to 5 m depth. The major onboard instruments on the rover include a Raman spectrometer/imager, a laser plasma spectrometer, an infrared spectrometer--these laser instruments provide the basis for in situ "remote" sensing of the sub-surface Martian environment within a powerful scientific package. The moles carry the instruments' sensor head array to the sub-surface. The moles are thus required to undergo a one-way trip down the boreholes without the need for recovery of moles or samples, eliminating much of the robotic complexity invoked by such operations.  相似文献   

18.
蠕动步态是解决火星车在火星松软表面行走或爬坡困难时提高牵引力的有效方法,合理设置蠕动步态对充分发挥火星车在松软地表上的移动性能至关重要。文章将Bekker等人的轮地力学理论用于整车蠕动步态的受力分析,通过建立火星车的运动学模型,分析关节的运动关系,得到蠕动步态的协调运动方案,并通过原理样机试验对该方案的作用效果进行验证,为主动悬架蠕动步态的轮速配合给出了合理的建议。  相似文献   

19.
Graham JM 《Astrobiology》2004,4(2):168-195
Mars is bitterly cold and dry, but robotic spacecraft have returned abundant data that indicate Mars once had a much warmer and wetter climate in the past. These data, the basis of the search for past or present life on Mars, suggest the possibility of returning Mars to its previous climate by global engineering techniques. Greenhouse gases, such as perfluorocarbons, appear to be the best method for warming Mars and increasing its atmospheric density so that liquid water becomes stable. The process of making Mars habitable for terrestrial organisms is called terraforming or planetary ecosynthesis. The process of introducing terrestrial ecosystems to Mars can be compared with a descent down a high mountain. Each drop in elevation results in a warmer, wetter climate and more diverse biological community. Beginning with a polar desert, the sequence of ecosystems passes through tundra, boreal forest, and temperate ecosystems where moisture determines the presence of desert, grassland, or forest. This model suggests a sequence for the introduction of ecosystems to Mars and the communities to search for potential colonizing species for Mars.  相似文献   

20.
火星表面稀薄的大气环境为旋翼式无人机在火星低空飞行提供了必要的条件。概述了火星无人机的研究背景、飞行环境与研制难点;整理了世界范围内各研究机构研制的旋翼式火星无人机的技术特点;梳理旋翼式火星无人机研究在气动特性理论、低气压飞行控制、系统集成等方面的关键技术;总结旋翼式火星无人机的仿真研究与实验研究成果;对火星无人机未来的发展趋势进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号