首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 888 毫秒
1.
Landis GA 《Astrobiology》2001,1(2):161-164
On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life does not exist on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was more conducive to life.  相似文献   

2.
Channel C of the orbital hyperspectrometer OMEGA onboard Mars Express spacecraft has delivered data on the distribution and seasonal variability of water ice spectral features at 1.25, 1.5, 2.0 μm, based on which one may conclude about the thickness of ice coverage and microstructure of the upper, optically active ice layer on the Martian surface. Data covering polar regions during spring-to-summer periods of both hemispheres have been analyzed. Microstructure of the North polar cap, as well as the residual frost deposits of the seasonal South polar cap, have revealed remarkable zonal variations with regularly located maxima. Based on the comparison with the atmospheric general circulation model results, it has been proposed that these variations result from the impact of mesoscale inertial waves in the circumpolar vortex on water exchange processes between the atmosphere and planetary surface.  相似文献   

3.
The Martian polar ice caps are regions of substantial scientific interest, being the most dynamic regions of Mars. They are volatile sinks and thus closely linked to Martian climatic conditions. Because of their scale and the precedent set by the past history of polar exploration on Earth, it is likely that an age of polar exploration will emerge on the surface of Mars after the establishment of a capable support structure at lower latitudes. Expeditions might be launched either from a lower latitude base camp or from a human-tended polar base. Based on previously presented expeditionary routes to the Martian poles, in this paper a "spiral in-spiral out" unsupported transpolar assault on the Martian north geographical pole is used as a Reference expedition to propose new types of equipment for the human polar exploration of Mars. Martian polar "ball" tents and "hover" modifications to the Nansen sledge for sledging on CO2-containing water ice substrates under low atmospheric pressures are suggested as elements for the success of these endeavours.Other challenges faced by these expeditions are quantitatively and qualitatively addressed.  相似文献   

4.
火星及其环境   总被引:6,自引:3,他引:3  
火星环境类似于地球,而探索其生命存在是重大的科学任务。在火星探测中,对火星及其环境的了解与研究是重要的任务目标,事关探测任务的成功实施。文章对国外火星探测已发布的成果进行收集和整理,其中包含大量的相关数据。这些知识和数据是火星探测任务设计的输入条件,可为我国火星探测计划的制定提供参考依据。  相似文献   

5.
A Kereszturi 《Astrobiology》2012,12(6):586-600
The astrobiological significance of certain environment types on Mars strongly depends on the temperature, duration, and chemistry of liquid water that was present there in the past. Recent works have focused on the identification of signs of ancient water on Mars, as it is more difficult to estimate the above-mentioned parameters. In this paper, two important factors are reviewed, the duration and the volume of water at different environment types on past and present Mars. Using currently available information, we can only roughly estimate these values, but as environment types show characteristic differences in this respect, it is worth comparing them and the result may have importance for research in astrobiology. Impact-induced and geothermal hydrothermal systems, lakes, and valley networks were in existence on Mars over the course of from 10(2) to 10(6) years, although they would have experienced substantially different temperature regimes. Ancient oceans, as well as water in outflow channels and gullies, and at the microscopic scale as interfacial water layers, would have had inherently different times of duration and overall volume: oceans may have endured from 10(4) to 10(6) years, while interfacial water would have had the smallest volume and residence time of liquid phase on Mars. Martian wet environments with longer residence times of liquid water are believed to have existed for that amount of time necessary for life to develop on Earth between the Late Heavy Bombardment and the age of the earliest fossil record. The results of this review show the necessity for more detailed analysis of conditions within geothermal heat-induced systems to reconstruct the conditions during weathering and mineral alteration, as well as to search for signs of reoccurring wet periods in ancient crater lakes.  相似文献   

6.
Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.  相似文献   

7.
We present a new European Mars mission proposal to build on the UK-led Beagle2 Mars mission and continue its astrobiology-focussed investigation of Mars. The small surface element to be delivered to the Martian surface--Vanguard--is designed to be carried by a Mars Express-type spacecraft bus to Mars and adopts a similar entry, descent and landing system as Beagle2. The surface element comprises a triad of robotic devices--a lander, a micro-rover of the Sojourner class for surface mobility, and three ground-penetrating moles mounted onto the rover for sub-surface penetration to 5 m depth. The major onboard instruments on the rover include a Raman spectrometer/imager, a laser plasma spectrometer, an infrared spectrometer--these laser instruments provide the basis for in situ "remote" sensing of the sub-surface Martian environment within a powerful scientific package. The moles carry the instruments' sensor head array to the sub-surface. The moles are thus required to undergo a one-way trip down the boreholes without the need for recovery of moles or samples, eliminating much of the robotic complexity invoked by such operations.  相似文献   

8.
RD Lorenz 《Astrobiology》2012,12(8):799-802
Abstract Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K. Key Words: Planetary protection-Planetary environments-Ice-Titan. Astrobiology 12, 799-802.  相似文献   

9.
进入火星大气的高温真实气体效应与气动加热研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对火星和地球大气分子热力学和化学行为的差异性,采用理论分析和数值模拟两种手段,研究探测器进入过程高超声速流动的分子振动激发、离解反应及热力学和化学非平衡等真实气体效应,获得不同气体模型条件下的高超声速气动加热规律,探究引起地火差异的根本原因。分析认为,探测器进入火星大气层的稀薄气体效应明显;激波层内发生CO 2气体为主的大规模离解,在极高温环境下O 2和CO也将离解;沿进入轨道的高超声速流动基本处于化学非平衡但热力学平衡状态;激波层内能量储存和分配模式因分子振动激发和化学反应而改变,分子振动激发会增强气动加热量,但均介于化学反应模型的完全非催化和完全催化壁结果之间;相同来流条件下CO 2介质高超声速气动加热强于空气介质,但真实的火星进入热载荷因大气稀薄而弱于地球再入环境。相关研究为我国未来火星探测器热防护系统设计提供技术支持。  相似文献   

10.
Ultraviolet radiation is an important natural physical influence on organism function and ecosystem interactions. The UV radiation fluxes in extraterrestrial environments are substantially different from those experienced on Earth. On Mars, the moon and in Earth orbit they are more biologically detrimental than on Earth. Based on previously presented fluxes and biologically weighted irradiances, this paper considers in more detail measures to mitigate UV radiation damage and methods to modify extraterrestrial UV radiation environments in artificial ecosystems that use natural sunlight. The transmission characteristics of a Martian material that will mimic the terrestrial UV radiation environment are presented. Transmissivity characteristics of other Martian and lunar materials are described. Manufacturing processes for the production of plastics and glass on the lunar and Martian surface are presented with special emphasis on photobiological requirements. Novel UV absorbing configurations are suggested.  相似文献   

11.
For more than a decade Kayser-Threde, a medium-sized enterprise of the German space industry, has been involved in astrobiology research in partnership with a variety of scientific institutes from all over Europe. Previous projects include exobiology research platforms in low Earth orbit on retrievable carriers and onboard the Space Station. More recently, exobiology payloads for in situ experimentation on Mars have been studied by Kayser-Threde under ESA contracts, specifically the ExoMars Pasteur Payload. These studies included work on a sample preparation and distribution systems for Martian rock/regolith samples, instrument concepts such as Raman spectroscopy and a Life Marker Chip, advanced microscope systems as well as robotic tools for astrobiology missions. The status of the funded technical studies and major results are presented. The reported industrial work was funded by ESA and the German Aerospace Center (DLR).  相似文献   

12.
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.  相似文献   

13.
The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.  相似文献   

14.
Jones EG  Lineweaver CH  Clarke JD 《Astrobiology》2011,11(10):1017-1033
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ~310?km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ~5?km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ~3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.  相似文献   

15.
There are four dozen potentially dangerous radioactive satellites orbiting the Earth today. Currently planned launches will vastly increase their number, resulting in over three metric tons of fuel and fission products in orbit by the year 2000. This article describes the nuclear power supply systems used by both the USA and the USSR, and the actual and potential hazards and accidents involved. The author suggests that a programme for retrieving the majority of nuclear supplies in space is both necessary and economically possible.  相似文献   

16.
Popa R  Smith AR  Popa R  Boone J  Fisk M 《Astrobiology》2012,12(1):9-18
The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ~12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.  相似文献   

17.
Muller AW 《Astrobiology》2003,3(3):555-564
During thermal cycling, organisms could live on thermosynthesis, a theoretical mechanism applicable to the origin of life and the early evolution of biological energy conversion. All extraterrestrial ice may be a repository for frozen dead or dormant organisms from earlier stages of evolution. In the presence of a thermal gradient within the ice, organisms might still be harvesting energy from thermosynthesis. Possible habitats for thermosynthesizers can be found throughout the Solar System, particularly in the cold traps on Mercury and the Moon, convecting waters on Mars, the oceans on moons in the outer Solar System, and smaller bodies rotating in the sunlight such as cosmic dust, meteorites, asteroids, and comets. A general strategy for detecting thermosynthetic organisms on Earth is offered, and highlights of current and upcoming robotic exploratory missions relevant to the detection of thermosynthesis are reviewed.  相似文献   

18.
One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat (Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the Earth atmosphere controls.  相似文献   

19.
Moore SR  Sears DW 《Astrobiology》2006,6(4):644-650
We report measurements of the evaporation rate of water under Mars-like conditions (CO2 atmosphere at 7 mbar and approximately 0 degrees C) in which small temperature oscillations about the freezing point repeatedly formed and removed a thin layer of ice. We found that the average evaporation at 2.7 +/- 0.5 degrees C without an ice layer (corrected for the difference in gravity on Earth and on Mars) was 1.24 +/- 0.12 mm/h, while at -2.1 +/- 0.3 degrees C with an ice layer the average evaporation rate was 0.84 +/- 0.08 mm/h. These values are in good agreement with those calculated for the evaporation of liquid water and ice when it is assumed that evaporation only depends on diffusion and buoyancy. Our findings suggest that such differences in evaporation rates are entirely due to the temperature difference and that the ice layer has little effect on evaporation rate. We infer that the formation of thin layers of ice on pools of water on Mars does not significantly increase the stability of water on the surface of Mars.  相似文献   

20.
Davies PC 《Astrobiology》2003,3(4):673-679
The hypothesis that life's rapid appearance on Earth justifies the belief that life is widespread in the universe has been investigated mathematically by Lineweaver and Davis (Astrobiology 2002;2:293-304). However, a rapid appearance could also be interpreted as evidence for a nonterrestrial origin. I attempt to quantify the relative probabilities for a non-indigenous versus indigenous origin, on the assumption that biogenesis involves one or more highly improbable steps, using a generalization of Carter's well-known observer-selection argument. The analysis is specifically applied to a Martian origin of life, with subsequent transfer to Earth within impact ejecta. My main result is that the relatively greater probability of a Martian origin rises sharply as a function of the number of difficult steps involved in biogenesis. The actual numerical factor depends on what is assumed about conditions on early Mars, but for a wide range of assumptions a Martian origin of life is decisively favored. By contrast, an extrasolar origin seems unlikely using the same analysis. These results complement those of Lineweaver and Davis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号