首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these observations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.  相似文献   

2.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.  相似文献   

3.
The study of the light elements abundances in low metallicity stars offers a unique way to learn about the past content of our Galaxy in energetic particles (EPs). This study teaches us that either the light elements are not produced by cosmic rays interactions in the interstellar medium (ISM), as has been thought for 30 years, or the cosmic rays are not what one usually thinks they are, namely standard interstellar material accelerated by the shock waves generated by supernova explosions. In any case, we have to revise our understanding of the EPs in the Galaxy. Relying on the observational evidence about Li, Be and B Galactic evolution as well as about the distribution of massive stars, we show that most of the EPs responsible for the production of light elements must be accelerated inside superbubbles, as is probably the case for the standard Galactic cosmic rays as well.  相似文献   

4.
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.  相似文献   

5.
The differences between the composition of Galactic cosmic rays and that of the interstellar medium are manifold, and they contain a wealth of information about the varying processes that created them. These differences reveal much about the initial mixing of freshly synthesized matter, the chemistry and differentiation of the interstellar medium, and the mechanisms and environment of ion injection and acceleration. Here we briefly explore these processes and show how they combine to create the peculiar, but potentially universal, composition of the cosmic rays and how measurements of the composition can provide a unique measure of the mixing ratio of the fresh supernova ejecta and the old interstellar medium in this initial phase of interstellar mixing. In particular, we show that the major abundance differences between the cosmic rays and the average interstellar medium can all result from cosmic ray ion injection by sputtering and scattering from fast refractory oxide grains in a mix of fresh supernova ejecta and old interstellar material. Since the bulk of the Galactic supernovae occur in the cores of superbubbles, the bulk of the cosmic rays are accelerated there out of such a mix. We show that the major abundance differences all imply a mixing ratio of the total masses of fresh supernova ejecta and old interstellar material in such cores is roughly 1 to 4. That means that the metallicity of ∼3 times solar, since the ejecta has a metallicity of ∼8 times that of the present interstellar medium.  相似文献   

6.
The first observations of solar cosmic rays were made simultaneously by many investigators at worldwide cosmic-ray stations in the periods of powerful chromospheric flares on February 28 and March 7, 1942. The discovery of these and the investigation of cosmic-ray solar-daily variations with maximum time near noon led some authors (Richtmyer and Teller, 1948; Alfvén, 1949, 1950) to a model of apparent cosmic-ray solar origin. We present here the results of the properties of solar cosmic rays from ground events (experimental and theoretical investigations). We also discuss important information from solar experimental data relating to these ground events observed in September and October 1989 and May 1990. Some experimental evidence of acceleration processes in associated phenomena with flares and long-term (solar cycle) variation of the average flux of solar cosmic rays is discussed as also cornal and interplanetary propagation, and that in the terrestrial magnetosphere. Note that the energy spectrum of solar cosmic rays varied very strongly from one flare to another. What are the causes of these phenomena? What is the nature of chemical and isotopic contents of solar cosmic rays? How can its changes occur in the energy spectrum and chemical contents of solar cosmic rays in the process of propagation? Is it possible to recalculate these parameters to the source? What makes solar cosmic rays rich in heavy nucleus and3He? The important data about electrons, positrons, gamma-quanta and neutrons from flares will be discussed in a subsequent paper (Dorman and Venkatesan, 1992). The question is: What main acceleration mechanism of solar flare and associated phenomena are reliable? These problems are connected with the more general problem on solar flare origin and its energetics. In Dorman and Venkatesan (1993) we will consider these problems as well as the problem of prediction of radiation hazard from solar cosmic rays (not only in space, but also in the Earth's atmosphere too).  相似文献   

7.
Observations of cosmic rays and their related radio to gamma-ray signatures are surveyed and discussed critically, and compared to theoretical models of the cosmic-ray origin and propagation. The analogous heliospheric processes are included as a well-studied case of the principal physical processes of energetic particle acceleration and propagation. Reinforcements, or conflicts, in the interpretations of cosmic-ray spectral and compositional characteristics arise when cosmic-ray source and propagation models are confronted with astronomical information about the Galaxy as a whole and from potential source sites, i.e., supernova remnants or regions with high massive-star density. This volume represents the outcome of two workshops held at ISSI. In this chapter we summarize the introductory papers presented below, and include insights from the workshop discussions.  相似文献   

8.
The interaction of cosmic rays with interstellar clouds may produce some of the observed gamma-ray sources. The use of molecular observations to estimate the cloud masses, which are used to derive cosmic-ray fluxes, is reviewed. Molecular diagnostics of high cosmic-ray ionization rates are discussed, and a detailed application of those diagnostics is summarised and presented as evidence that second-order Fermi acceleration is important in old supernova remnants and can produce cosmic rays of too low energy to induce gamma-ray emission.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.Royal Society Jaffé Donation Fellow.  相似文献   

9.
Jokipii  J.R. 《Space Science Reviews》1998,86(1-4):161-178
Cosmic rays from many sources and in many locations exhibit similar, inverse-power-law energy spectra, which suggests a common origin for most cosmic rays. Diffusive shock acceleration appears at present to be this common accelerator. Hence, anomalous cosmic rays, thought to be accelerated at the solar-wind termination shock, provide a relatively accessible laboratory for the study of the mechanism of cosmic-ray acceleration. Observations showing a transition from singly-charged anomalous cosmic-ray oxygen to multiply-charged at an energy of some 250 MeV support the picture of acceleration at the quasi-perpendicular termination shock. Such acceleration may be important in other sources, as well. The basic physics of this acceleration process is discussed in some detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Models of nonthermal particle acceleration in the vicinity of active star forming regions are reviewed. We discuss a collective effect of both stellar winds of massive stars and core collapsed supernovae as particle acceleration agents. Collective supernova explosions with great energy release in the form of multiple interacting shock waves inside the superbubbles are argued as a favourable site of nonthermal particle acceleration. The acceleration mechanism provides efficient creation of a nonthermal nuclei population with a hard low-energy spectrum, containing a substantial part of the kinetic energy released by the winds of young massive stars and supernovae. We discuss a model of temporal evolution of particle distribution function accounting for the nonlinear effect of the reaction of the accelerated particles on the shock turbulence inside the superbubble. The model illustrates that both the low-energy metal-rich nonthermal component and the standard galactic cosmic rays could be efficiently produced by superbubbles at different evolution stages.  相似文献   

11.
The containment lifetime of the cosmic radiation is a crucial parameter in the investigation of the cosmic-ray origin and plays an important role in the dynamics of the Galaxy. The separation of the cosmic-ray Be isotopes achieved by two satellite experiments is considered in this paper, and from the measured isotopic ratio between the radioactive 10Be (half-life = 1.5 × 106 yr) and the stable 9Be, it is deduced that the cosmic rays propagate through matter with an average density of 0.24 ± 0.07 atoms cm-3, lower than the traditionally quoted average density in the galactic disk of 1 atom cm-3. This paper reviews the implications of this result for the cosmic-ray age mainly in the context of two models of confinement and propagation: the homogeneous model, normally identified with confinement to the galactic gaseous disk, and a diffusion model in which the cosmic rays extend into a galactic halo. The propagation calculations use:
  1. a newly deduced cosmic-ray pathlength distribution.
  2. a self-consistent model of solar modulation.
  3. an up-to-date set of fragmentation cross sections.
The satellite results and their implications are compared with the information on the cosmic-ray age derived from other cosmic-ray radioactive nuclei and the measured differential energy spectrum of high-energy electrons. It is a major conclusion of this paper that in a homogeneous model the cosmic-ray age is 15(+7, -4) million years, i.e., about a factor 4 longer than early estimates based on the abundances of the light nuclei Li, Be, and B and a nominal interstellar density of 1 atom cm -3. The lifetime is even longer when the satellite results are applied to a diffusion halo model. The deduced traversed matter density, together with other astrophysical considerations, suggest the population of a galactic halo by the cosmic rays.  相似文献   

12.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

13.
The existing paradigm of the origin of Galactic cosmic rays places strong supernovae shocks as the acceleration site for this material. However, although the EGRET gamma-ray telescope has reported evidence for GeV gamma rays from some supernovae, it is still unclear if the signal is produced by locally intense cosmic rays. Although non-thermal X-ray emissions have been detected from supernova remnants and interpreted as synchrotron emission from locally intense electrons at energies up to 100 TeV, the inferred source energy spectral slopes seem much steeper than the electron source spectrum observed through direct measurements. It remains the case that simple energetics provide the most convincing argument that supernovae power the bulk of cosmic rays. Two characteristics which can be used to investigate this issue at high energy are the source energy spectra and the source composition derived from direct measurements.  相似文献   

14.
The problem of the origin and distribution of cosmic rays in the Galaxy is introduced by summarizing the literature on the radio and -ray studies of the Galaxy, discussing the propagation of cosmic rays in the interstellar medium, and listing the observed properties of cosmic rays. The localization of cosmic-ray electrons to their parent galaxies is an indicator that processes leading to cosmic-ray production may be common to galaxies like our own. The studies of external galaxies are therefore relevant to our own and have the advantage of better perspective.Studies of cosmic rays in exsternal galaxies are limited to the electron component which radiates synchrotron emission at radio frequencies. Multi-colour photometry of galaxies allows the separation of stellar populations that harbour particular classes of cosmic-ray sources. Statistical studies aimed at correlating integrated radio and optical properties of galaxies have reached conflicting conclusions. Although a correlation of cosmic rays with the older stellar population is proposed by some authors, others argue that the young stellar population harbours cosmic ray sources.Morphological studies of resolved galaxies provide information on the distributions of cosmic-ray electrons in galaxies. Studies in which the resolution of the radio images is much lower than in the optical are limited and have also produced contradictory results. Radio imaging at optical resolution is required for a direct comparison of cosmic-ray distributions with stellar distributions. Such studies are reviewed and the constraints they impose on cosmic-ray propagation and distribution of cosmic-ray sources is discussed.Theoretical cosmic-ray acceleration mechanisms are surveyed and an attempt is made to determine likely contributors. Mechanisms associated with shock waves in a variety of astrophysical settings are reviewed. Acceleration mechanisms not involving shocks, are also discussed. Finally, the status of the field is summarized along with some speculation on the future directions the field may take.  相似文献   

15.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   

16.
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008–2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.  相似文献   

17.
The theory and observational evidence pertaining to particle acceleration by shock waves in astrophysical objects and in space are systematized. Recent works showing observational and theoretical aspects of the problem dealing with shocks in turbulent media are emphasized. The acceleration of particles by shocks in turbulent media is observed in interplanetary space. This acceleration mechanism is of particular interest from the point of view of the origin of cosmic rays, providing the degree form of the spectrum. The index of the spectrum is close to the observable one for galactic cosmic rays. It depends slightly on specific conditions in the acceleration region. Electron and nucleus acceleration in supernova remnants and in radiogalaxies is discussed, and theory and observational data are compared. The theory of particle acceleration by supersonic turbulence is outlined.  相似文献   

18.
In the following we describe recent progress in our understanding of the origin of cosmic rays. We propose that cosmic rays originate mainly in three sites, a) normal supernova explosions into the interstellar medium, b) supernova explosions into stellar winds, and c) hot spots of powerful radio galaxies. The proposal depends on an assumption about the scaling of the turbulent diffusive transport in cosmic ray mediated shock regions; the proposal also uses a specific model for the interstellar transport of cosmic rays. The model has been investigated in some detail and compared to i) the radio data of OB stars, Wolf Rayet stars, radio supernovae, radio supernova remnants, Gamma-ray line and continuum emission from starforming regions, and the cosmic ray electron spectrum, ii) the Akeno air shower data over the particle energy range from 10 TeV to EeV, and iii) the Akeno and Fly's Eye air shower data from 0.1 EeV to above 100 EeV.  相似文献   

19.
The possibility of observing gamma ray emission from supernova remnants is discussed. It is shown that this could be possible in the 100 MeV band accessible to satellite instruments, but that confusion with the Galactic background is a major problem. At TeV energies and with modern imaging atmospheric cherenkov telescopes the situation should be much better and at least some of the nearby remnants may be detectable. Positive detections in both bands would provide a decisive test of current theoretical ideas on particle acceleration in supernova remnants and the origin of the Galactic cosmic rays.  相似文献   

20.
We address past and future trends in the theory and modeling of galactic cosmic rays in the heliosphere, and select some of the outstanding issues where future progress is anticipated. We discuss the theory of diffusive transport, briefly discuss drifts, the force-field approximation, and current numerical methods. Special attention is given to the areas of modeling cosmic rays in the heliosheath, the implications of the recent unusual solar minimum, and the understanding of high rigidity cosmic-ray anisotropies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号