首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
简要回顾了增材制造技术在航空钛合金领域的发展历程及应用现状,从成形效率、零件尺寸、零件复杂度、材料利用率、表面质量等方面比较了基于直接能量沉积技术与粉末床熔化技术的5种增材制造方法的特点及适用范围,阐述了粉末床熔化技术在推动航空钛合金结构轻量化设计与低成本制造方面的优势。以Ti-6Al-4V为例,分析了增材制造熔池中的物理过程对柱状晶显微组织形成与力学性能各向异性的影响,总结了业界在过程监控与质量控制方面的初步成果以及现有增材制造标准对材料、工艺、检测等方面的要求。最后,介绍了增材制造钛合金零件的成本构成与计算模型,提出了适合采用增材制造工艺的零件特点,并对航空钛合金增材制造的未来进行了展望。  相似文献   

2.
增材制造技术在航空装备领域具有广泛的发展前景。作为重要的金属增材制造工艺方法,电子束增材制造正处于快速发展阶段。电子束熔丝增材制造技术可满足航空大尺寸结构件的快速低成本制造,并可用于高价值零件的修复。电子束选区熔化增材制造技术在复杂结构以及难熔合金制件的制造方面具有显著优势。本文在对国内外电子束增材制造技术现状和发展趋势分析的基础上,从发展需求、目标、共性关键技术、应用、战略支撑与保障5个方面综合分析,绘制了面向2035年的航空装备电子束增材制造技术路线图,以期为航空装备电子束增材制造技术发展提供参考。  相似文献   

3.
镍钛合金具有特异的形状记忆效应与超弹性、高阻尼性、良好的机械性能,是制造驱动器、阻尼器等的功能结构材料.由于镍钛合金的熔炼制备与机加工性能较差,目前应用的镍钛合金构件通常外形简单且尺寸较小,限制了其在航空等领域大型结构件中的应用.金属增材制造技术为形状复杂的大型镍钛合金构建的制造开辟了新途径.综述了镍钛合金的增材制造技术的现状,并举例说明其在航空制造领域中的应用.  相似文献   

4.
航空航天轻质金属材料电弧熔丝增材制造技术   总被引:1,自引:0,他引:1  
航空航天轻质化、高性能整体结构日趋广泛的应用,对高效、低成本快速研制提出了迫切的要求。电弧熔丝增材制造与其他金属3D打印技术相比,具有制造成本低、成形效率高等特点,为解决这一问题提供了可能。综述了国内外铝合金、钛合金等轻质金属材料电弧熔丝增材制造技术的研究现状,指出了目前存在的主要问题及发展方向。最后,分析了电弧熔丝增材制造大型构件的应力与变形控制、路径规划软件、成形过程在线监控与反馈控制等共性关键技术的发展趋势。  相似文献   

5.
增材制造技术一直被定位在传统制造技术难以低成本、高效率完成的复杂结构制造[1]。目前航空领域中,增材制造技术主要是用来解决某些航空装备重点零部件生产研制瓶颈,而忽略了增材制造技术对实现航空装备轻量化的重大作用。在飞机设计和制造中,增材制造技术不仅可以使形状结构复杂的零组件整体成形以减少装配连接结构,而且还可以成形出更加合理的空前形状结构尺寸的飞机零组件,以达到充分实现飞机"宏观结构轻量化"的目的,特别是对飞机系统件的减重效果最为明显。飞机结构轻量化对提升飞机整体性能、减少飞机耗油量以及节约制造成本、减少排放污染等意义重大。同时增材制造技术在国内的成熟发展,将逐渐成为国内飞机设计理念革新的标志。  相似文献   

6.
激光选区熔化(SLM)增材制造技术常用于格栅、腔体结构、燃烧室组件等航空、航天、兵器领域复杂小型零件的制造.为了适应大尺寸零部件的制造,较为理想的方案是采用分段增材成形+拼焊连接的方案,针对SLM成形TC4钛合金进行了电子束焊接工艺验证研究,分析了SLM成形材料焊接气孔缺陷及其产生原因,探讨了不同焊接工艺对气孔缺陷的改...  相似文献   

7.
激光增材制造支持结构设计创新、快速研制和验证,是当前航空装备领域最具代表性的增材制造方法,其中激光选区熔化主要应用于复杂精密功能结构的精确近净成形制造,激光直接沉积主要用于大尺寸复杂承载结构的制造。为支撑航空领域增材制造技术发展的战略布局,本文对激光增材制造现状和发展趋势进行梳理,指出增材制造发展重点必然会转向产品的冶金质量、力学性能及其稳定性控制方面,增材制造设备的在线监测、参数自整定控制等智能化功能的研究开发正成为设备的研发热点,基于损伤失效分析、寿命预测研究的增材制件力学行为研究以及基于元件、特征结构的性能考核验证技术,开始引起工程应用部门的关注。在对技术发展趋势分析的基础上,提出2035年航空领域激光增材制造技术发展目标和相应的政策和环境支撑、保障需求,并给出2035年技术发展路线图建议。  相似文献   

8.
张纪奎  孔祥艺  马少俊  刘栋  王新波  冯军  王华明 《航空学报》2021,42(10):525430-525430
随着损伤容限设计理念发展和轻量化要求提高,高强高韧钛合金逐渐成为航空装备关键主承力构件主要结构材料。激光增材制造制备钛合金大型主承力构件具有数字化、短周期、低成本等技术优势,特别是激光增材制造过程超常固态相变动力学条件为制备高强高韧钛合金提供了新的机会。本文根据航空主承力结构选材性能要求,对激光增材制造TC11钛合金静强度、疲劳和损伤容限特性进行测试与分析,在此基础上对其在航空主承力结构的应用前景进行分析。结果表明,激光增材制造TC11钛合金力学性能具有显著的高强高韧和低屈强比特征,其疲劳缺口敏感性和裂纹扩展速率低,性能分散性小,综合性能满足航空主承力结构选材要求。与目前航空主承力结构广泛应用的TC4-DT损伤容限型钛合金相比,激光增材制造TC11高强高韧钛合金损伤容限特性相当、疲劳性能有所改善、许用应力提高23%,结构具有进一步减重优势。激光增材制造TC11钛合金优异的强韧性匹配在提高结构许用应力的同时可避免大厚度结构发生脆性断裂,其低疲劳缺口敏感性和优异的疲劳裂纹扩展特性对于结构服役安全具有重要意义。  相似文献   

9.
电弧增材制造研究现状及在航空制造中应用前景   总被引:1,自引:0,他引:1  
电弧增材制造采用逐层堆焊的方式制造致密金属实体构件,因以电弧为载能束,热输入高,成形速度快,适用于大尺寸复杂构件低成本、高效快速近净成形。面对新一代飞行器制造成本及可靠性要求,其结构件逐渐向大型化、整体化、智能化发展,电弧增材制造技术在大尺寸航空结构件成形上具有其他增材技术不可比拟的效率与成本优势。本文综述了电弧增材制造技术研究现状,并结合该技术特征及国内增材制造技术研究规划,评述了我国在该技术领域的发展际遇与挑战,指出其在航空制造领域的发展前景及意义。  相似文献   

10.
电弧增材制造技术作为增材制造的一个重要分支,在最近几年取得了显著的进展。文中简要介绍了增材制造技术的分类及各自特点,综述了钛合金电弧增材制造技术的研究现状,重点从钛合金成形零件的宏观和微观组织结构、制件显微组织控制方法两方面分析研究新进展,探讨了钛合金电弧增材制造技术发展所面临的技术问题以及需要重点考虑的发展方向。  相似文献   

11.
王茂松  杜宇雷 《航空学报》2021,42(7):625263-625263
钛铝合金具有轻质、高强、耐高温等优异特性,在航空领域,特别是在航空发动机涡轮叶片上具有重要应用价值。然而,钛铝合金的室温脆性大、热变形能力低,使得采用传统的锻造、精密铸造、粉末冶金等技术均难以制造具有复杂形状,特别是具有内部空腔结构的钛铝合金叶片,限制了其性能的进一步提升。增材制造技术能够突破形状的制约,有望发展成为制造钛铝合金复杂结构零部件的新技术。目前,应用于钛铝合金的增材制造技术主要有电子束选区熔化、选区激光熔化和激光金属沉积。本文调研了增材制造钛铝合金领域2010~2020年的文献,对上述3类增材制造技术的原理和特性、所使用合金粉末的特性、打印构件的相组成、组织形貌和热处理工艺、宏观和微观力学性能及其在航空领域的应用等研究进行了对比分析和评述,并对增材制造钛铝合金发展中所存在的问题及下一步研发重点进行了总结和探讨。  相似文献   

12.
先进航空发动机高压压气机550~600℃环境使用的关键/重要件对600℃高温钛合金提出迫切需求。但是,难成形的复杂构件以及梯度/复合结构与功能一体化构件等的制造,采用传统铸造、锻造等工艺技术难以满足需求和研发要求。增材制造是先进制造技术的典型代表,拥有材料设计-制造一体化、复杂设计-定制一体化等独特优势,为600℃高温钛合金新材料/新技术研发提供了新的途径。目前国内外已开始关注通过增材制造的方式制备600℃高温钛合金,重点研究材料-工艺-组织-性能的关系。本文首先简要回顾600℃高温钛合金研究,其次重点介绍不同增材制造工艺下600℃高温钛合金沉积态和后处理态的微观组织特点;在综合性能研究方面,列举并分析拉伸性能、蠕变性能、热疲劳性能和抗氧化性能等关键性能;在复杂设计/复合结构章节,论述以600℃高温钛合金为基体的复合材料和梯度结构增材制造的研究进展。最后,对增材制造600℃高温钛合金材料开发、复合工艺探索、缺陷控制和性能评价标准建立等研究方向进行展望。  相似文献   

13.
熔模精密铸造在航空航天领域的应用现状与发展趋势   总被引:1,自引:0,他引:1  
介绍了熔模精密铸造技术在航空航天军工装备、民用航空以及商业航天领域的应用,详细介绍了国内外高温合金、钛合金、铝合金与镁合金熔模精密技术的研究现状与发展情况,侧重介绍了北京航空材料研究院近年来在该领域取得的研究成果,对比阐述了熔模精密铸造技术与增材制造、半固态成形、注射成形等新型工艺技术,展望了熔模精密铸造技术的未来研究方向与热点。  相似文献   

14.
航空铸造钛合金及其成型技术发展   总被引:1,自引:0,他引:1  
简述了铸造钛合金及TiAl合金的特点及在国内外航空领域的应用.根据我国钛合金领域专利申请情况分析了铸造钛合金技术在近30年的变化,特别是在航空领域的变化.随着航空制造技术的发展和高性能飞机的需求,钛合金铸件正向大型、整体和复杂化变化,TiAl合金铸件的发展将大大提高航空钛合金的使用温度.而航空领域的钛合金铸造技术将不再是单一的熔模精密铸造,将融合铸造模拟仿真技术和增材制造技术的优势,采取复合式发展的道路,以提高其整体精铸水平和生产效率.  相似文献   

15.
金属增材制造技术在航空发动机领域的应用   总被引:3,自引:1,他引:2  
从增材制造技术的基本概念出发,研究了适用于金属材料的定向能量沉积(DED)技术和粉末熔覆(PBF)技术的基本原理、技术内涵以及技术发展,重点分析了增材制造技术在开发燃油喷嘴和低压涡轮叶片等商业化零部件的应用,以及对涡轮叶片、整体叶轮和齿轮等航空发动机部件的修复.研究表明,金属增材制造技术广泛适用于钛合金、镍基合金、钛铝合金等金属材料的航空发动机部件,在设计、制造和经济可承受性等方面具有优势.   相似文献   

16.
增材制造——面向航空航天制造的变革性技术   总被引:1,自引:0,他引:1  
增材制造技术在航空航天应用方面具有单件小批量的复杂结构快速制造优势,未来将向着设计、材料和成形一体化方向发展。分析了增材制造在航空航天领域应用发展的3个层面,以航空发动机涡轮叶片增材制造、高性能聚醚醚酮(PEEK)及其复合材料、连续纤维增强树脂复合材料及太空3D打印为主题,介绍了增材制造技术国内外以及西安交通大学的研究状况。涡轮叶片应用增材制造工艺可以有效提高效率降低成本,未来向高性能的高温合金和陶瓷基复合材料增材制造技术发展。高性能轻质聚合物PEEK及其复合材料增材制造在高力学性能结构件、吸波功能件的成形中得到应用,将改变现有的设计与材料,推动结构与功能一体化发展。连续纤维复合材料增材制造将带动无模具纤维复合材料成形的新发展,在太空3D打印将改变未来航空航天制造模式。增材制造技术将给航空航天制造技术带来变革性发展。  相似文献   

17.
复杂高筋薄壁构件在航天飞行器中被广泛应用,整体制造是实现这类构件轻量化的重要途径,也是当前制造领域最具有挑战的工程难题之一,其中旋压-增材复合制造代表了复杂高筋薄壁构件整体制造的前沿。近几年,本文作者研究团队在复杂航天薄壁筒段旋压-增材复合制造方向上开展了较为系统的研究工作。从内筋薄壁筒段旋压成形和等材-增材复合制造两个角度对国内外学者研究工作进行总结;同时,从内筋铝合金筒段旋压断裂机制与组织演变规律、筒壁内增材热力学行为与组织调控、旋压-增材复合制造工艺等方面介绍了当前初步研究成果,并对旋压-增材复合制造技术的发展进行了展望。比较全面地梳理了复杂高筋薄壁筒段复合制造技术现状和发展趋势,为复杂薄壁构件整体制造技术研究提供指导。  相似文献   

18.
针对TC18激光、电子束增材制造钛合金及变形钛合金3种不同制造工艺的材料开展超声检测特征试验研究。结果表明,TC18钛合金增材制造材料不同成形方向的超声波声速、材料衰减及检测灵敏度均存在较大差异,与变形钛合金相比具有明显的方向性。本研究结果对于增材制造制件的超声检测方法研究具有重要参考价值。  相似文献   

19.
航空增材制造复杂结构件表面光整加工技术研究及进展   总被引:1,自引:0,他引:1  
增材制造是解决航空复杂结构件制造难题的有效方法。首先概述了增材制造技术原理、特点及其在航空领域的应用,并深入评述了增材制造技术在材料力学性能、表面质量等方面面临的挑战,指出增减材复合制造的方法,并表明先进表面光整加工技术是提升航空增材制造复杂结构件表面质量和精度的有效途径。重点阐述了高加工可达性的磨粒流加工技术在航空复杂结构件精密抛光中的优势,并总结了保持零件精度同时改善表面质量需要重点研究的内容。  相似文献   

20.
商用航空发动机金属增材制造技术及装备应用   总被引:2,自引:0,他引:2  
主要论述了金属增材制造技术的特点、优势及相关装备,分析了该项技术在商用航空发动机研制过程中的关键作用,并发掘可使用该技术进行加工制造或修复的商用航空发动机零部件及具体的成形方式和装备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号