首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transonically rotating toroidal plasmas occur at all scales in the plasma universe and, recently, also in laboratory tokamak plasmas. This offers great opportunities for new insights of the effects of transonic transitions on the background equilibrium flows, and on the waves and instabilities excited. Transfer of knowledge and computational methods on MHD and two-fluid waves and instabilities in magnetically confined laboratory fusion plasmas to space and astrophysical plasmas is seriously hampered though by two related difficulties:
  1. in contrast to laboratory plasmas, astrophysical plasmas always have sizeable plasma flows so that they can never be described as a static equilibrium;
  2. these flows are usually ‘transonic’, i.e., surpass one of the critical speeds related to the different flow regimes with quite different physical characteristics.
Based on previously obtained MHD results on the stationary states and instabilities of transonically rotating accretion disks about compact objects, the extension to two-fluid plasmas is initiated: A variational principle for the computation of two-fluid stationary states is constructed which involves seven fields determining the different physical variables, and six arbitrary stream functions that should be determined by spatially resolved astrophysical observations. It exhibits all the intricacies due to the electron and ion flow excursions from the magnetic flux surfaces. New hyperbolic flow regimes are found with quite different properties than the MHD ones.  相似文献   

2.
Goedbloed  J.P. 《Space Science Reviews》2003,107(1-2):353-360
The properties of magnetohydrodynamic waves and instabilities of laboratory and space plasmas are determined by the overall magnetic confinement geometry and by the detailed distributions of the density, pressure, magnetic field, and background velocity of the plasma. Consequently, measurement of the spectrum of MHD waves (MHD spectroscopy) gives direct information on the internal state of the plasma, provided a theoretical model is available to solve the forward as well as the inverse spectral problems. This terminology entails a program, viz. to improve the accuracy of our knowledge of plasmas, both in the laboratory and in space. Here, helioseismology (which could be considered as one of the forms of MHD spectroscopy) may serve as a luminous example. The required study of magnetohydrodynamic waves and instabilities of both laboratory and space plasmas has been conducted for many years starting from the assumption of static equilibrium. Recently, there is a outburst of interest for plasma states where this assumption is violated. In fusion research, this interest is due to the importance of neutral beam heating and pumped divertor action for the extraction of heat and exhaust needed in future tokamak reactors. Both result in rotation of the plasma with speeds that do not permit the assumption of static equilibrium anymore. In astrophysics, observations in the full range of electromagnetic radiation has revealed the primary importance of plasma flows in such diverse situations as coronal flux tubes, stellar winds, rotating accretion disks, and jets emitted from radio galaxies. These flows have speeds which substantially influence the background stationary equilibrium state, if such a state exists at all. Consequently, it is important to study both the stationary states of magnetized plasmas with flow and the waves and instabilities they exhibit. We will present new results along these lines, extending from the discovery of gaps in the continuous spectrum and low-frequency Alfvén waves driven by rotation to the nonlinear flow patterns that occur when the background speed traverses the full range from sub-slow to super-fast. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.  相似文献   

4.
The dynamics of the solar corona as observed during solar minimum with the Ultraviolet Coronagraph Spectrometer, UVCS, on SOHO is discussed. The large quiescent coronal streamers existing during this phase of the solar cycle are very likely composed by sub-streamers, formed by closed loops and separated by open field lines that are channelling a slow plasma that flows close to the heliospheric current sheet. The polar coronal holes, with magnetic topology significantly varying from their core to their edges, emit fast wind in their central region and slow wind close to the streamer boundary. The transition from fast to slow wind then appears to be gradual in the corona, in contrast with the sharp transition between the two wind regimes observed in the heliosphere. It is suggested that speed, abundance and kinetic energy of the wind are modulated by the topology of the coronal magnetic field. Energy deposition occurs both in the slow and fast wind but its effect on the kinetic temperature and expansion rate is different for the slow and fast wind.  相似文献   

5.
Voitenko  Yuriy  Goossens  Marcel 《Space Science Reviews》2003,107(1-2):387-401
We study kinetic excitation mechanisms for high-frequency dispersive Alfvén waves in the solar corona, solar wind, and Earth's magnetosphere. The ion-cyclotron and Cherenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (ICKAWs). Ion beams, anisotropic particles distributions and currents provide free energy for the excitation of ICKAWs in space plasmas. As particular examples we consider ICKAW instabilities in the coronal magnetic reconnection events, in the fast solar wind, and in the Earth's magnetopause. Energy conversion and transport initiated by ICKAW instabilities is significant for the whole dynamics of Sun-Earth connection chain, and observations of ICKAW activity could provide a diagnostic/predictive tool in the space environment research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The heating of solar coronal loops by the resonant absorption or phase-mixing of incident wave energy is investigated in the framework of 3D nonlinear magnetohydrodynamics (MHD) by means of numerical simulations.  相似文献   

7.
Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes. In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.  相似文献   

8.
M. Ugai 《Space Science Reviews》2001,95(1-2):601-611
Large dissipative events, such as solar flares and geomagnetic substorms, may result from sudden onset of fast (explosive) magnetic reconnection. Hence, it is a long-standing problem to find the physical mechanism that makes magnetic reconnection explosive; in particular, how can the fast magnetic reconnection explosively evolve in space plasmas? In this respect, we have proposed the spontaneous fast reconnection model as a nonlinear instability that grows by the positive feedback between plasma microphysics (anomalous resistivity) and macrophysics (global reconnection flow). On the basis of MHD simulations, we demonstrate for a variety of physical situations that the fast reconnection mechanism involving slow shocks in fact evolves explosively as a nonlinear instability and is sustained quasi-steadily on the nonlinear saturation phase. Also, distinct plasma processes, such as large-scale plasmoid propagation, magnetic loop development and loop-top heating, and asymmetric fast reconnection evolution, directly result from the spontaneous fast reconnection model. Obviously, MHD simulations are very useful in understanding the basic physics of explosive fast reconnection evolution in space plasmas. However, they cannot treat the details of microphysics near an X neutral point, which should be precisely studied in the coming 21st century.  相似文献   

9.
Dewar  R.L. 《Space Science Reviews》2003,107(1-2):349-352
The class of pressure-driven plasma instabilities known as ballooning modes may be responsible for such diverse phenomena as high-beta disruptions in tokamaks, solar flares and magnetospheric substorms. In this paper the theory of the spectrum of unstable eigenvalues of the linearized ideal magnetohydrodynamic (MHD) equations of motion in non-axisymmetric toroidal equilibria is sketched, comparing and contrasting systems with open field lines and systems with toroidally confined field lines. The need to regularize ideal MHD to keep the wavenumber finite, and the relevance of quantum chaos theory to understand the structure of the spectrum, is pointed out. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Chang  Tom  Tam  Sunny W.Y.  Wu  Cheng-Chin  Consolini  Giuseppe 《Space Science Reviews》2003,107(1-2):425-445
The first definitive observation that provided convincing evidence indicating certain turbulent space plasma processes are in states of ‘complexity’ was the discovery of the apparent power-law probability distribution of solar flare intensities. Recent statistical studies of complexity in space plasmas came from the AE index, UVI auroral imagery, and in-situ measurements related to the dynamics of the plasma sheet in the Earth's magnetotail and the auroral zone. In this review, we describe a theory of dynamical ‘complexity’ for space plasma systems far from equilibrium. We demonstrate that the sporadic and localized interactions of magnetic coherent structures are the origin of ‘complexity’ in space plasmas. Such interactions generate the anomalous diffusion, transport, acceleration, and evolution of the macroscopic states of the overall dynamical systems. Several illustrative examples are considered. These include: the dynamical multi- and cross-scale interactions of the macro-and kinetic coherent structures in a sheared magnetic field geometry, the preferential acceleration of the bursty bulk flows in the plasma sheet, and the onset of ‘fluctuation induced nonlinear instabilities’ that can lead to magnetic reconfigurations. The technique of dynamical renormalization group is introduced and applied to the study of two-dimensional intermittent MHD fluctuations and an analogous modified forest-fire model exhibiting forced and/or self-organized criticality [FSOC] and other types of topological phase transitions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The basic MHD waves of a coronal flux loop are investigated for the rectangular box model of a plasma with oblique magnetic field and line-tied at the ends. The waves found are completely different from those in a periodic box, representative for tokamaks. They consist of a mixture of Alfvén components with a ballooning factor, favouring minimal field line bending, and fast components without such a factor. Pure Alfvén modes are only found as singular limiting cases of cluster spectra of Alfvén-fast waves, where the fast components are localised in a photospheric boundary layer which is dictated by the requirements of line-tying. This justifies the assumption of continuous spectra in coronal loops, required for the mechanism of resonant Alfvén wave heating. The waves consist of large amplitude Alfvén components in the corona and fast components with a small but rapidly varying amplitude in the boundary layer, so that they appear to have the right signature for effective transfer of energy from the photosphere to the corona.  相似文献   

12.
Magnetohydrodynamic (MHD) theory has been used in space physics for more than forty years, yet many important questions about space plasmas remain unanswered. We still do not understand how the solar wind is accelerated, how mass, momentum and energy are transported into the magnetosphere and what mechanisms initiate substorms. Questions have been raised from the beginning of the space era whether MHD theory can describe correctly space plasmas that are collisionless and rarely in thermal equilibrium. Ideal MHD fluids do not induce electromotive force, hence they lose the capability to interact electromagnetically. No currents and magnetic fields are generated, rendering ideal MHD theory not very useful for space plasmas. Observations from the plasma sheet are used as examples to show how collisionless plasmas behave. Interpreting these observations using MHD and ideal MHD concepts can lead to misleading conclusions. Notably, the bursty bulk flows (BBF) with large mean velocities left( v ≥400 km s right) that have been interpreted previously as E×B flows are shown to involve much more complicated physics. The sources of these nonvanishing v events, while still not known, are intimately related to mechanisms that create large phase space gradients that include beams and acceleration of ions to MeV energies. The distributions of these nonvanishing v events are associated with large amplitude variations of the magnetic field at frequencies up to and exceeding the local Larmor frequency where MHD theory is not valid. Understanding collisionless plasma dynamics such as substorms in the plasma sheet requires the self-consistency that only kinetic theory can provide. Kinetic modeling is still undergoing continual development with many studies limited to one and two dimensions, but there is urgent need to improve these models as more and more data show kinetic physics is fundamentally important. Only then will we be able to make progress and obtain a correct picture of how collisionless plasmas work in space.  相似文献   

13.
Shear flow instabilities are an important aspect of hydrodynamic studies. The present review article discusses the role of an ambient magnetic field which both modifies the Kelvin-Helmholtz instability and may introduce new types of magnetohydrodynamic waves and instabilities. A brief overview of magnetospheric pulsations is presented with an emphasis on the long-period resonant Alfv??n waves associated with the high speed solar wind. The spatio-temporal evolution of magnetically modified shear flow instabilities in various space plasma structures is addressed. A distinction between convective and absolute instabilities is necessary for proper understanding of theory and correct interpretation of the observations. Finally, it is shown how incompressible Alfv??nic disturbances may become unstable in a compressible flow in the absence of any shear. An application to coronal loops is presented.  相似文献   

14.
Parameters of expanding magnetic loops and arches and of mass flows generated by them in the corona have been computed in a 1D two-fluid approximation. Two possible trigger mechanisms of the coronal transients have been considered: (i) sudden increase of the background magnetic field strength, and (ii) heating and compression plasma inside these magnetic structures. We discuss the formation of shock waves and their dependence on dynamics and geometry of the magnetic structures.  相似文献   

15.
We present grid-adaptive numerical simulations of magnetized plasma jets, modeled by means of the compressible magnetohydrodynamic equations. The Adaptive Mesh Refinement strategy makes it possible to investigate long-term jet dynamics where both large-scale and small-scale effects are at play. We extend recent findings for uniformly magnetized, periodic shear layers to planar and fully 3D extended jet segments. The jet lengths cover multiple, typically 10, axial wavelengths of the fastest growing Kelvin–Helmholtz (KH) like modes. The dominant linear MHD instabilities of the jet flows are quantified by means of MHD spectroscopic analysis. In cases characterized by sonic Mach numbers about unity and large plasma beta values, both single and double shear layers (planar jets) manifest self-organizing trends to large scales, e.g. by continuous pairing/merging between co-rotating vortices, simultaneously with the introduction of small-scale features by magnetic reconnection events. The vortices form as a result of KH unstable shear-flow layers, and their coalescence arises from the growth of subharmonic modes at multiple wavelengths of the fastest growing KH instability. In extended two-dimensional jet segments, we investigate how varying jet width alters this coalescence process occurring at both edges, e.g. by introducing Batchelor-like coupling between counter-rotating vortices formed at opposing weakly magnetized, close shear layers. Finally, periodic segments of supersonic magnetized jets are simulated in two- and three-dimensional cases, which are characterized by violent shock-dominated transients.  相似文献   

16.
Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.  相似文献   

17.
Quasi-periodic pulsations (QPP) are a common feature of flaring energy releases in the solar atmosphere, observed in all bands, from radio to hard X-ray. In this review we concentrate on QPP with the periods longer than one second. Physical mechanisms responsible for the generation of long QPP split into two groups: “load/unload” mechanisms and MHD oscillations. Load/unload mechanisms are repetitive regimes of flaring energy releases by magnetic reconnection or by other means. MHD oscillations can affect all elements of the flaring emission generation: triggering of reconnection and modulation of its rate, acceleration and dynamics of non-thermal electrons, and physical conditions in the emitting plasmas. In the case of MHD oscillations, the periodicity of QPP is determined either by the presence of some resonances, e.g. standing modes of plasma structures, or by wave dispersion. Periods and other parameters of QPP are linked with properties of flaring plasmas and their morphology. Observational investigation of the QPP generation mechanisms based upon the use of spatial information, broadband spectral coverage and multi-periodicity is discussed.  相似文献   

18.
Recent high temporal and spatial resolution satellite observations of the solar corona provide ample evidence of oscillations in coronal structures. The observed waves and oscillations can be used as a diagnostic tool of the poorly known coronal parameters, such as magnetic field, density, and temperature. The emerging field of coronal seismology relies on the interpretation of the various coronal oscillations in terms of theoretically known wave modes, and the comparison of observed and theoretical wave mode properties for the determination of the coronal parameters. However, due to complexity of coronal structures the various modes are coupled, and the application of linear theory of idealized structures to coronal loops and active regions limits the usefulness of such methods. Improved coronal seismology can be achieved by the development of full 3D MHD dynamical model of relevant coronal structures and the oscillation phenomena. In addition to improved accuracy compared to linear analysis, 3D MHD models allow the diagnostic method to include nonlinearity, compressibility, and dissipation. The current progress made with 3D MHD models of waves in the corona is reviewed, and the challenges facing further development of this method are discussed in the perspective of future improvement that will be driven by new high resolution and high cadence satellite data, such as received from Hinode and STEREO, and expected from SDO.  相似文献   

19.
Berchem  J.  Fuselier  S.A.  Petrinec  S.  Frey  H.U.  Burch  J.L. 《Space Science Reviews》2003,109(1-4):313-349
The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the IMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model, though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside ionosphere are enhanced. Overall the results of these initial comparisons between global MHD simulation results and IMAGE observations emphasize the interplay between reconnection and dynamic pressure processes at the dayside magnetopause, as well as the intricate connection between the bow shock and the auroral region.  相似文献   

20.
Some theoretical aspects of solar coronal streamers are discussed with emphasis on the current sheet and reconnection processes going on along the axis of the streamer. The dynamics of the streamer is a combination of MHD and transport, with acceleration of particles due to reconnection and leakage of plasma outwards as a slow solar wind as the observable results. The presence of the almost-closed magnetic bottles of streamers that can store high-energy particles for significant times provides the birdcage for solar cosmic rays, the reconnection in the sheet feeds medium-energy protons into the corona for the large-scale storage needed for certain flare models, and the build-up of excess density sets the stage for coronal mass ejections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号